cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A295021 Cubes whose largest digit is 6.

Original entry on oeis.org

64, 216, 15625, 46656, 50653, 64000, 132651, 216000, 262144, 456533, 614125, 636056, 1601613, 1643032, 2406104, 2515456, 3112136, 3652264, 6331625, 10360232, 13144256, 15625000, 41063625, 46656000, 50653000, 52313624, 55306341, 56623104, 64000000, 66430125, 100544625
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			64 is in the sequence because it is a cube, 64 = 4^3, and its largest digit is 6.
		

Crossrefs

Cf. A294996 (the corresponding cube roots); A278936, A294663, A295025, A295022, A295023, A295024 (same for digit 3 .. 9); A295016 (same for squares).
Cf. A000578 (the cubes).

Programs

  • Mathematica
    Select[Range[500]^3,Max[IntegerDigits[#]]==6&] (* Harvey P. Dale, Jun 21 2022 *)
  • PARI
    for(n=1,500, vecmax(digits(n^3))==6 &&print1(n^3,","))

Formula

a(n) = A294996(n)^3.

A295022 Cubes whose largest digit is 7.

Original entry on oeis.org

27, 2744, 3375, 12167, 17576, 27000, 157464, 166375, 175616, 250047, 274625, 300763, 474552, 753571, 1157625, 1367631, 1771561, 2000376, 2352637, 2460375, 2571353, 2744000, 3176523, 3375000, 4330747, 4657463, 4741632, 5177717, 5451776, 6644672, 7645373, 11543176, 12167000
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			27 is in the sequence because it is a cube, 27 = 3^3, and its largest digit is 7.
		

Crossrefs

Cf. A294997 (the corresponding cube roots); A278936, A294663, A295025, A295021, A295023, A295024 (same for digit 3 .. 9); A295017 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,250, vecmax(digits(n^3))==7 &&print1(n^3,","))

Formula

a(n) = A294997(n)^3.

A295024 Cubes whose largest digit is 9.

Original entry on oeis.org

729, 2197, 4096, 4913, 6859, 9261, 19683, 21952, 24389, 29791, 35937, 39304, 59319, 68921, 79507, 91125, 97336, 110592, 117649, 185193, 195112, 205379, 226981, 287496, 328509, 357911, 389017, 438976, 493039, 592704, 704969, 729000, 912673, 941192, 970299, 1092727, 1191016
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.

Examples

			2197 is in the sequence because it is a cube, 2197 = 13^3, and its largest digit is 9.
		

Crossrefs

Cf. A294999 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295023 (same for digit 3 .. 8), A295019 (same for squares).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,150, vecmax(digits(n^3))==8 &&print1(n^3,","))

Formula

a(n) = A294999(n)^3.

A294998 Numbers n such that the largest digit of n^3 is 8.

Original entry on oeis.org

2, 12, 18, 20, 22, 24, 32, 35, 38, 42, 44, 47, 52, 53, 62, 72, 75, 82, 83, 87, 88, 92, 93, 94, 95, 96, 102, 104, 114, 115, 120, 122, 123, 127, 138, 141, 142, 145, 152, 153, 155, 161, 162, 172, 174, 180, 182, 183, 186, 192, 194, 195, 200, 201, 202, 203, 205, 206, 217, 220, 228, 232, 238, 240, 242, 244, 251
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., without trailing '0'.

Examples

			12 is in the sequence because the largest digit of 12^3 = 1728 is 8.
		

Crossrefs

Cf. A295023 (the corresponding cubes); A278937, A294664, A294665, A294996 .. A294999 (same for digit 3, ..., 9); A295008 (same for squares).
Cf. A000578 (the cubes).

Programs

  • Maple
    filter:= n -> max(convert(n^3,base,10))=8:
    select(filter, [$1..1000]); # Robert Israel, Jul 03 2020
  • Mathematica
    Select[Range[300],Max[IntegerDigits[#^3]]==8&] (* Harvey P. Dale, Aug 21 2019 *)
  • PARI
    for(n=1,500, vecmax(digits(n^3))==8&&print1(n","))
Showing 1-4 of 4 results.