A295076 Numbers n > 1 such that n and sigma(n) have the same smallest prime factor.
6, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 136, 138, 140, 142, 146, 148
Offset: 1
Keywords
Examples
30 = 2*3*5 and sigma(30) = 72 = 2^3*3^2 hence 30 is in the sequence.
Crossrefs
Programs
-
Magma
[n: n in [2..1000000] | Minimum(PrimeDivisors(SumOfDivisors(n))) eq Minimum(PrimeDivisors(n))]
-
Maple
select(t -> min(numtheory:-factorset(t))=min(numtheory:-factorset(numtheory:-sigma(t))), [$2..1000]); # Robert Israel, Nov 14 2017
-
Mathematica
Rest@ Select[Range@ 150, SameQ @@ Map[FactorInteger[#][[1, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
-
PARI
isok(n) = factor(n)[1,1] == factor(sigma(n))[1,1]; \\ Michel Marcus, Nov 14 2017
Extensions
Added n>1 to definition - N. J. A. Sloane, Feb 03 2018
Comments