cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295224 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 7, 6, 1, 1, 3, 12, 25, 19, 1, 1, 3, 19, 57, 108, 49, 1, 1, 4, 26, 118, 366, 492, 150, 1, 1, 4, 35, 203, 931, 2340, 2431, 442, 1, 1, 5, 46, 332, 1989, 7756, 16252, 12371, 1424, 1, 1, 5, 57, 494, 3766, 20254, 68685, 115940, 65169, 4522
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called H.
T(n,k) is the number of oriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024

Examples

			Array begins:
  =====================================================
  n\k|    3     4      5       6        7         8
  ---|-------------------------------------------------
   1 |    1     1      1       1        1         1 ...
   2 |    1     1      1       1        1         1 ...
   3 |    1     2      2       3        3         4 ...
   4 |    4     7     12      19       26        35 ...
   5 |    6    25     57     118      203       332 ...
   6 |   19   108    366     931     1989      3766 ...
   7 |   49   492   2340    7756    20254     45448 ...
   8 |  150  2431  16252   68685   219388    580203 ...
   9 |  442 12371 115940  630465  2459730   7684881 ...
  10 | 1424 65169 854981 5966610 28431861 104898024 ...
  ...
		

Crossrefs

Columns k=3..6 are A001683(n+2), A005034, A005038, A221184(n-1).
Polyominoes: A295260 (unoriented), A070914 (rooted).

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#]&]/k;
    Table[T[n - k + 1, k], {n, 1, 13}, {k, n, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n, k, r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k) = u(n,k,1) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return u(n, k, 1) + ((u(n//2, k, 1) if n%2==0 else 0) - u(n, k, 2))//2 + sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/n for fixed k.