A295224 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation (k >= 3).
1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 7, 6, 1, 1, 3, 12, 25, 19, 1, 1, 3, 19, 57, 108, 49, 1, 1, 4, 26, 118, 366, 492, 150, 1, 1, 4, 35, 203, 931, 2340, 2431, 442, 1, 1, 5, 46, 332, 1989, 7756, 16252, 12371, 1424, 1, 1, 5, 57, 494, 3766, 20254, 68685, 115940, 65169, 4522
Offset: 1
Examples
Array begins: ===================================================== n\k| 3 4 5 6 7 8 ---|------------------------------------------------- 1 | 1 1 1 1 1 1 ... 2 | 1 1 1 1 1 1 ... 3 | 1 2 2 3 3 4 ... 4 | 4 7 12 19 26 35 ... 5 | 6 25 57 118 203 332 ... 6 | 19 108 366 931 1989 3766 ... 7 | 49 492 2340 7756 20254 45448 ... 8 | 150 2431 16252 68685 219388 580203 ... 9 | 442 12371 115940 630465 2459730 7684881 ... 10 | 1424 65169 854981 5966610 28431861 104898024 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
- Wikipedia, Fuss-Catalan number
Crossrefs
Programs
-
Mathematica
u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r); T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#]&]/k; Table[T[n - k + 1, k], {n, 1, 13}, {k, n, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
-
PARI
\\ here u is Fuss-Catalan sequence with p = k+1. u(n, k, r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)} T(n,k) = u(n,k,1) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k; for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
-
Python
from sympy import binomial, gcd, totient, divisors def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r) def T(n, k): return u(n, k, 1) + ((u(n//2, k, 1) if n%2==0 else 0) - u(n, k, 2))//2 + sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code
Formula
T(n,k) ~ A295222(n,k)/n for fixed k.
Comments