A295260 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation and reflection (k >= 3).
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 5, 4, 1, 1, 3, 8, 16, 12, 1, 1, 3, 12, 33, 60, 27, 1, 1, 4, 16, 68, 194, 261, 82, 1, 1, 4, 21, 112, 483, 1196, 1243, 228, 1, 1, 5, 27, 183, 1020, 3946, 8196, 6257, 733, 1, 1, 5, 33, 266, 1918, 10222, 34485, 58140, 32721, 2282
Offset: 1
Examples
Array begins: =================================================== n\k| 3 4 5 6 7 8 ---|----------------------------------------------- 1 | 1 1 1 1 1 1 ... 2 | 1 1 1 1 1 1 ... 3 | 1 2 2 3 3 4 ... 4 | 3 5 8 12 16 21 ... 5 | 4 16 33 68 112 183 ... 6 | 12 60 194 483 1020 1918 ... 7 | 27 261 1196 3946 10222 22908 ... 8 | 82 1243 8196 34485 109947 290511 ... 9 | 228 6257 58140 315810 1230840 3844688 ... 10 | 733 32721 427975 2984570 14218671 52454248 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
- Wikipedia, Fuss-Catalan number
Crossrefs
Programs
-
Mathematica
u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r); T[n_, k_] := (u[n, k, 1] + If[OddQ[n], u[(n - 1)/2, k, Quotient[k, 2]], If[OddQ[k], (u[n/2 - 1, k, k - 1] + u[n/2, k, 1])/2, u[n/2, k, 1]]] + (If[EvenQ[n], u[n/2, k, 1]] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k)/2 /. Null -> 0; Table[T[n - k + 2, k + 1], {n, 1, 11}, {k, n + 1, 2, -1}] // Flatten (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
-
PARI
\\ here u is Fuss-Catalan sequence with p = k+1. u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)} T(n,k) = {(u(n,k,1) + if(n%2, u((n-1)/2,k,k\2), if(k%2, (u(n/2-1,k,(k-1)) + u(n/2,k,1))/2, u(n/2,k,1))) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k)/2} for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
Formula
T(n,k) ~ A295222(n,k)/(2*n) for fixed k.
Comments