cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295332 Denominators of the continued fraction convergents to sqrt(13)/2 = A295330.

Original entry on oeis.org

1, 1, 5, 71, 289, 360, 1009, 1369, 6485, 92159, 375121, 467280, 1309681, 1776961, 8417525, 119622311, 486906769, 606529080, 1699964929, 2306494009, 10925940965, 155269667519, 632004611041, 787274278560, 2206553168161, 2993827446721, 14181862955045, 201539908817351, 820341498224449, 1021881407041800, 2864104312308049, 3885985719349849, 18408047189707445
Offset: 0

Views

Author

Wolfdieter Lang, Nov 20 2017

Keywords

Comments

The numerators are given in A295331.
The continued fraction expansion of sqrt(13)/2 is [1, repeat(1, 4, 14, 4, 1, 2)].

Examples

			See A295331 for the first convergents.
		

Crossrefs

Formula

G.f.: (1 + x + 5*x^2 + 71*x^3 + 289*x^4 + 360*x^5 - 289*x^6 + 71*x^7 - 5*x^8 + x^9 - x^10) / ((1 - 3*x - x^2)*(1 + 3*x - x^2)*(1 + 3*x + 10*x^2 - 3*x^3 + x^4)*(1 - 3*x + 10*x^2 + 3*x^3 + x^4)). See A295331 for a hint for the derivation. Here the a(n) recurrence is the same as there but the inputs are a(0) = 1, a(-1) = 0, (a(-2) = 1). The unfactorized denominator is 1 - 1298*x^6 + x^12.
a(n) = 1298*a(n-6) - a(n-12), n >= 12, with inputs a(0)..a(11).