cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295330 Decimal expansion of sqrt(13)/2.

Original entry on oeis.org

1, 8, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8
Offset: 1

Views

Author

Wolfdieter Lang, Nov 20 2017

Keywords

Comments

In a regular hexagon inscribed in a circle of radius R the largest distance between any vertex and a midpoint of a side, after division of R, is sqrt(13)/2. The two smaller distance ratios are sqrt(7)/2 = A242703 and 1/2.
The regular period 6 continued fraction of sqrt(13)/2 is [1; 1, 4, 14, 4, 1, 2], and the convergents are given in A295331/A295332.
Essentially the same as A223139, A209927, A098316 and A085550. - R. J. Mathar, Nov 23 2017

Examples

			1.8027756377319946465596106337352479731256482869226231063552265281135834741465...
		

Crossrefs

Programs

A295331 Numerators of continued fraction convergents to sqrt(13)/2 = A295330.

Original entry on oeis.org

1, 2, 9, 128, 521, 649, 1819, 2468, 11691, 166142, 676259, 842401, 2361061, 3203462, 15174909, 215652188, 877783661, 1093435849, 3064655359, 4158091208, 19697020191, 279916373882, 1139362515719, 1419278889601, 3977920294921, 5397199184522, 25566717033009, 363331237646648, 1478891667619601, 1842222905266249, 5163337478152099, 7005560383418348, 33185579011825491
Offset: 0

Views

Author

Wolfdieter Lang, Nov 20 2017

Keywords

Comments

The denominators are given in A295332.
The continued fraction expansion of sqrt(13)/2 is [1, repeat(1, 4, 14, 4, 1, 2)] = [b(0), repeat(b(1), b(2), b(3), b(4), b(5), b(6))].

Examples

			The convergents a(n)/A295332 begin: 1, 2, 9/5, 128/71, 521/289, 649/360, 1819/1009, 2468/1369, 11691/6485, 166142/92159, 676259/375121, 842401/467280, 2361061/1309681, 3203462/1776961, 15174909/8417525, 215652188/119622311, 877783661/486906769, 1093435849/606529080, ...
		

Crossrefs

Cf. A294972/A294973 (sqrt(7/2)), A295330, A295332.

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[13]/2,40]] (* or *) LinearRecurrence[ {0,0,0,0,0,1298,0,0,0,0,0,-1},{1,2,9,128,521,649,1819,2468,11691,166142,676259,842401},40] (* Harvey P. Dale, Jan 23 2019 *)

Formula

G.f.: (1 + 2*x + 9*x^2 + 128*x^3 + 521*x^4 + 649*x^5 + 521*x^6 - 128*x^7 + 9*x^8 + 2*x^9 + x^10 - x^11) / ((1 - 3*x - x^2)*(1 + 3*x - x^2)*(1 + 3*x + 10*x^2 - 3*x^3 + x^4)*(1 - 3*x + 10*x^2 + 3*x^3 + x^4)). For the derivation see the period 4 example for the denominators of the convergents of sqrt(7)/2 given in A294972. Here the period is 6 and the input for the recurrence a(n) = b(n)*a(n-1) + a(n-2) is a(-1) = 1 = a(0) (a(-2) = 1 - b(0) = 0) with the b(n) modulo 6 given above. Note that a(6*k) = 2*a(6*k-1) + a(6*k-2) is valid only for k >= 1 because a(0) = 1 is not equal to 2*a(-1) + a(-2) = 2. The denominator in the unfactorized form is 1 - 1298*x^6 + x^12.
a(n) = 1298*a(n-6) - a(n-12), n >= 12, with inputs a(0)..a(11).
Showing 1-2 of 2 results.