cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295340 Numbers congruent to 11 or 13 mod 15.

Original entry on oeis.org

11, 13, 26, 28, 41, 43, 56, 58, 71, 73, 86, 88, 101, 103, 116, 118, 131, 133, 146, 148, 161, 163, 176, 178, 191, 193, 206, 208, 221, 223, 236, 238, 251, 253, 266, 268, 281, 283, 296, 298, 311, 313, 326, 328, 341, 343, 356, 358, 371, 373, 386, 388, 401, 403, 416, 418, 431, 433
Offset: 1

Views

Author

Mikk Heidemaa, Nov 20 2017

Keywords

Comments

Includes every prime and twin prime (as pairs of consecutive primes) congruent to 11 or 13 mod 30.

Crossrefs

Cf. A132238 (subsequence of primes), A132241 (subsequence of twin primes).

Programs

  • Magma
    [n: n in [1..500] | n mod 15 in [11, 13]]; // Vincenzo Librandi, Sep 06 2018
  • Mathematica
    ParallelMap[11 * Ceiling[#/2] + 2 * # - 2 &, Range@ 10^3]
    CoefficientList[ Series[(2x^2 + 2x + 11)/((1 + x) (x - 1)^2), {x, 0, 60}], x] (* or *)
    LinearRecurrence[{1, 1, -1}, {11, 13, 26}, 60] (* Robert G. Wilson v, Jan 09 2018 *)
    Select[Range[500], MemberQ[{11, 13}, Mod[#, 15]] &] (* Vincenzo Librandi, Sep 06 2018 *)
    11/2 * Mod[#, 2] + 15 * #/2 - 2 &/@ Range@ 500 (* Mikk Heidemaa, Sep 08 2018 *)
  • PARI
    Vec(x*(11 + 2*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Dec 07 2017
    
  • PARI
    a(n) = if(n%2, (15*n+7)/2, (15*n-4)/2); \\ Altug Alkan, Sep 06 2018
    
  • PARI
    a(n) = [11, -2][(n - 1)%2 + 1] + 15*(n \ 2) \\ David A. Corneth, Sep 06 2018
    

Formula

a(n) = (1/4)*(-1)^n*(3*(-1)^n*(10*n + 1) - 11) for n > 0.
From Colin Barker, Dec 07 2017: (Start)
G.f.: x*(11 + 2*x + 2*x^2) / ((1 - x)^2*(1 + x)).
a(n) = (15*n - 4) / 2 for n even.
a(n) = (15*n + 7) / 2 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
(End)
a(n) = ceiling(15*n/2) + 5*(n mod 2) - 2 for n > 0. - Mikk Heidemaa, Sep 06 2018
a(n + 2) = a(n) + 15. - David A. Corneth, Sep 06 2018
a(n) = (11/2)*(n mod 2) + 15*n/2 - 2 for n > 0. - Mikk Heidemaa, Sep 08 2018
f(n) = 15*n - ((13*n + 17) mod 26) for n > 0 yields odd terms. - Mikk Heidemaa, Oct 28 2019
a(n) = 11*ceiling(1/2*n) + 2*n - 2 for n > 0. - Mikk Heidemaa, Nov 04 2019
E.g.f.: 2 + ((30*x + 3)*exp(x) - 11*exp(-x))/4. - David Lovler, Sep 08 2022

Extensions

Name simplified by David A. Corneth, Sep 06 2018