cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295407 a(n) = n! * Laguerre(n, 3*n, -n).

Original entry on oeis.org

1, 5, 92, 2859, 124832, 7018105, 482598720, 39236322839, 3681751480832, 391611920476653, 46560370087846400, 6119025385880816035, 880818377346674454528, 137824220501484017301281, 23291983597732334528110592, 4228010378355969165140319375
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 22 2017

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(4*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
  • Mathematica
    Table[n!*LaguerreL[n,3*n,-n],{n,0,15}]
    Join[{1},Table[n!*Sum[Binomial[4*n, n-k]*n^k/k!, {k, 0, n}], {n, 1, 15}]]
  • PARI
    for(n=0,30, print1(n!*sum(k=0, n, binomial(4*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
    
  • PARI
    a(n) = n!*pollaguerre(n, 3*n, -n); \\ Michel Marcus, Feb 05 2021
    

Formula

a(n) = n!*Sum_{k=0..n} binomial(4*n,n-k)*n^k/k!.
a(n) ~ sqrt(1/2 + 3/(2*sqrt(5))) * (8*(sqrt(5)-1))^n * exp((sqrt(5)-3)*n) * n^n.
a(n) = n! * [x^n] exp(n*x/(1 - x))/(1 - x)^(3*n+1). - Ilya Gutkovskiy, Nov 23 2017