cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085625 Numbers that are the sum of 2 squares in exactly 2 ways.

Original entry on oeis.org

25, 50, 65, 85, 100, 125, 130, 145, 169, 170, 185, 200, 205, 221, 225, 250, 260, 265, 289, 290, 305, 338, 340, 365, 370, 377, 400, 410, 442, 445, 450, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 578, 580, 585, 610, 629, 676, 680, 685, 689, 697, 730
Offset: 1

Views

Author

Hugo Pfoertner, Jul 09 2003

Keywords

Comments

Wells erroneously writes that this sequence begins as 50, 65, 85, 145, ... . - Stefano Spezia, Sep 07 2024

Examples

			a(3) = 65 because 65 = 8^2 + 1^2 = 7^2 + 4^2;
a(4) = 85 because 85 = 9^2 + 2^2 = 7^2 + 6^2.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 125.

Crossrefs

Programs

  • Mathematica
    Select[Range[730], Length[PowersRepresentations[#,2,2]]==2 &] (* Stefano Spezia, Sep 07 2024 *)

Formula

n such that A000161(n) = 2.

A295747 Numbers that have exactly six representations of a sum of seven nonnegative squares.

Original entry on oeis.org

21, 22, 26, 27, 32
Offset: 1

Views

Author

Robert Price, Nov 26 2017

Keywords

Comments

This sequence is finite and complete. See the von Eitzen Link and the proof in A294675 stating that for n > 5408, the number of ways to write n as a sum of 5 squares (without allowing zero squares) is at least floor(sqrt(n - 101) / 8) = 9. Since this sequence relaxes the restriction of zero squares and allows two more zero squares, the number of representations for n > 5408 is at least nine. Then an inspection of n <= 5408 completes the proof.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Showing 1-2 of 2 results.