cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295537 G.f. A(x) satisfies A(x)^2 = 1 + x + x*A(x)^7.

Original entry on oeis.org

1, 1, 3, 18, 121, 896, 7028, 57406, 483080, 4159169, 36462855, 324391132, 2921210383, 26576350332, 243901358678, 2255283941595, 20991223674553, 196508265126327, 1849038158249933, 17478100523106657, 165891345107764059, 1580380321767062796, 15106335141526197636, 144839560162346664092, 1392621873057558622860, 13424503737125805253734
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2017

Keywords

Comments

Terms appear to equal A011792, apart from offset and an initial 1.
Note that the function G(x) = 1 + x*G(x)^3 (g.f. of A001764) also satisfies the condition: G(x) = 1/G(-x*G(x)^5).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 121*x^4 + 896*x^5 + 7028*x^6 + 57406*x^7 + 483080*x^8 + 4159169*x^9 + 36462855*x^10 + 324391132*x^11 + 2921210383*x^12 + 26576350332*x^13 + 243901358678*x^14 + 2255283941595*x^15 + ...
such that A(x)^2 = 1+x + x*A(x)^7.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 7*x^2 + 42*x^3 + 287*x^4 + 2142*x^5 + 16898*x^6 + 138600*x^7 + 1170037*x^8 + 10098774*x^9 + 88712736*x^10 + ...
A(x)^7 = 1 + 7*x + 42*x^2 + 287*x^3 + 2142*x^4 + 16898*x^5 + 138600*x^6 + 1170037*x^7 + 10098774*x^8 + 88712736*x^9 + ...
A(-x*A(x)^5) = 1 - x - 2*x^2 - 13*x^3 - 84*x^4 - 616*x^5 - 4788*x^6 - 38865*x^7 - 325489*x^8 - 2791845*x^9 - 24401730*x^10 + ...
which equals 1/A(x).
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(x*_Z^6-x*_Z^5+x*_Z^4-x*_Z^3
            +x*_Z^2-(1+x)*_Z+1+x), x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2017
  • Mathematica
    m = 26; A[_] = 0;
    Do[A[x_] = Sqrt[1 + x + x A[x]^7] + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = sqrt(1+x + x*A^7 +x*O(x^n)) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    A295537(N=20)=Vec(serreverse('x/Ser(Polrev([1,3,9,13,11,5,1]),,N))+1) \\ Yields a vector with N terms. To compute only a(n) use polcoeff(...,n) instead of Vec(), and N = n+1. - M. F. Hasler, Mar 16 2018

Formula

G.f. A(x) satisfies:
(1) 1 + Series_Reversion( x/(1 + 3*x + 9*x^2 + 13*x^3 + 11*x^4 + 5*x^5 + x^6) ).
(2) F(A(x)) = x such that F(x) = -(1 - x^2)/(1 + x^7).
(3) A(x) = 1 / A(-x*A(x)^5).
a(n) ~ sqrt((1 + s^7)/(5*Pi)) / (2*n^(3/2)*r^(n - 1/2)), where r = 0.09760952485001949704447959455483068408354114893087... and s = 1.239618221385127629837391742046923301758368685253... are real roots of the system of equations 1 + r + r*s^7 = s^2, 7*r*s^5 = 2. - Vaclav Kotesovec, Nov 28 2017
From Seiichi Manyama, Apr 04 2024: (Start)
G.f. A(x) satisfies A(x) = 1 + x * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4 - A(x)^5 + A(x)^6).
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(7*k/2+1/2,n)/(7*k+1). (End)