cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143180 Triangle read by rows: T(n, k) = (n-k+1)^3 + (k+1)^3 - 3*(n-k+1)*(k+1).

Original entry on oeis.org

-1, 3, 3, 19, 4, 19, 53, 17, 17, 53, 111, 48, 27, 48, 111, 199, 103, 55, 55, 103, 199, 323, 188, 107, 80, 107, 188, 323, 489, 309, 189, 129, 129, 189, 309, 489, 703, 472, 307, 208, 175, 208, 307, 472, 703, 971, 683, 467, 323, 251, 251, 323, 467, 683, 971, 1299, 948, 675, 480, 363, 324, 363, 480, 675, 948, 1299
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 17 2008

Keywords

Examples

			Triangle begins as:
    -1;
     3,   3;
    19,   4,  19;
    53,  17,  17,  53;
   111,  48,  27,  48, 111;
   199, 103,  55,  55, 103, 199;
   323, 188, 107,  80, 107, 188, 323;
   489, 309, 189, 129, 129, 189, 309, 489;
   703, 472, 307, 208, 175, 208, 307, 472, 703;
   971, 683, 467, 323, 251, 251, 323, 467, 683, 971;
  1299, 948, 675, 480, 363, 324, 363, 480, 675, 948, 1299;
		

Crossrefs

Cf. A295709.

Programs

  • Magma
    A143180:= func< n,k | (n-k+1)^3 + (k+1)^3 - 3*(n-k+1)*(k+1) >;
    [A143180(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 19 2024
    
  • Mathematica
    T[n_,k_]:= (n-k+1)^3 + (k+1)^3 - 3*(n-k+1)*(k+1);
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A143180(n,k): return (n-k+1)^3 + (k+1)^3 - 3*(n-k+1)*(k+1)
    flatten([[A143180(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 19 2024

Formula

T(n, k) = (n-k+1)^3 + (k+1)^3 - 3*(n-k+1)*(k+1).
T(n, n-k) = T(n, k).
G.f.: ((-1 + 7*x + x^2 - x^3) + (7 - 36*x + 15*x^2 - 4*x^3)*(x*y) + (1 + 15*x + 3*x^2 - x^3)*(x*y)^2 - (1 + 4*x + x^2)*(x*y)^3)/((1-x)^4*(1 - x*y)^4). - G. C. Greubel, Apr 22 2024

Extensions

Edited by G. C. Greubel, Apr 19 2024

A353049 Decimal expansion of 8*sqrt(2) / 3.

Original entry on oeis.org

3, 7, 7, 1, 2, 3, 6, 1, 6, 6, 3, 2, 8, 2, 5, 3, 4, 6, 3, 4, 7, 1, 1, 6, 9, 9, 3, 1, 2, 2, 5, 8, 6, 1, 5, 4, 2, 8, 5, 2, 4, 5, 8, 3, 3, 4, 3, 3, 8, 5, 2, 8, 1, 9, 5, 1, 3, 7, 8, 1, 2, 6, 3, 4, 6, 4, 1, 9, 5, 3, 2, 7, 5, 8, 9, 8, 9, 5, 2, 1, 0, 3, 6, 0, 1, 0, 3, 3, 4, 2, 4, 8, 7, 3, 7, 1, 0, 8
Offset: 1

Views

Author

Bernard Schott, Apr 20 2022

Keywords

Comments

8*sqrt(2) / (3*a) is the maximum curvature of the Folium of Descartes x^3 + y^3 - 3*a*x*y = 0, occurring at the point M of coordinates (3a/2, 3a/2). The corresponding minimum radius of curvature is (3*sqrt(2))*a/16.
This point M is at the intersection of the first bisector with the loop, distinct from O (see curves).

Examples

			3.771236166328253463471169931225...
		

Crossrefs

Cf. A295709 (arc length of the loop of the Folium of Descartes).

Programs

  • Maple
    evalf(8*sqrt(2)/3,100);
  • Mathematica
    RealDigits[8*Sqrt[2]/3, 10, 100][[1]] (* Amiram Eldar, Apr 20 2022 *)
  • PARI
    8*sqrt(2)/3 \\ Michel Marcus, Apr 20 2022

Formula

Equals 8*A131594.
Showing 1-2 of 2 results.