cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295787 Positive integers m such that m, m + 1 and m + 2 are a sum of a positive square and a positive cube.

Original entry on oeis.org

126, 127, 350, 351, 441, 485, 511, 848, 1431, 1568, 2024, 2752, 2843, 3024, 3844, 4697, 5489, 7120, 7343, 7399, 8125, 8126, 8623, 9430, 9800, 10703, 10842, 11474, 12176, 12335, 12742, 12743, 13748, 14191, 14911, 15254, 16128, 16640, 16857, 17067, 17207, 18095, 18567
Offset: 1

Views

Author

David A. Corneth, Dec 30 2017

Keywords

Comments

Is a(n) >= c*n^e for some constants c and e? For terms in the b-file, we'd have e > 2.1598. - David A. Corneth, Mar 15 2019

Examples

			126 and 127 are terms because: 126 = 1^2 + 5^3, 127 = 10^2 + 3^3, 128 = 8^2 + 4^3, 129 = 11^2 + 2^3. - _Bernard Schott_, Mar 17 2019
		

Crossrefs

Cf. A055394.

Programs

  • Mathematica
    s = Union@ Flatten@ Table[s^2 + c^3, {s, 141}, {c, 27}]; First@# & /@ Select[Partition[s, 3, 1], #[[1]] + 2 == #[[3]] &] (* Robert G. Wilson v, Jan 07 2018 *)
    With[{mx=19000},Select[Partition[Union[Flatten[Table[a^2+b^3,{a,Ceiling[ Sqrt[mx]]},{b,Ceiling[Surd[mx,3]]}]]],3,1],Differences[#]=={1,1}&]][[All,1]] (* Harvey P. Dale, Sep 07 2020 *)
  • PARI
    is_a055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0 \\ after Charles R Greathouse IV
    is(n) = is_a055394(n) && is_a055394(n+1) && is_a055394(n+2) \\ Felix Fröhlich, Jan 08 2018
    
  • PARI
    See Corneth Link \\ David A. Corneth, Mar 15 2019