A295787 Positive integers m such that m, m + 1 and m + 2 are a sum of a positive square and a positive cube.
126, 127, 350, 351, 441, 485, 511, 848, 1431, 1568, 2024, 2752, 2843, 3024, 3844, 4697, 5489, 7120, 7343, 7399, 8125, 8126, 8623, 9430, 9800, 10703, 10842, 11474, 12176, 12335, 12742, 12743, 13748, 14191, 14911, 15254, 16128, 16640, 16857, 17067, 17207, 18095, 18567
Offset: 1
Keywords
Examples
126 and 127 are terms because: 126 = 1^2 + 5^3, 127 = 10^2 + 3^3, 128 = 8^2 + 4^3, 129 = 11^2 + 2^3. - _Bernard Schott_, Mar 17 2019
Links
- David A. Corneth, Table of n, a(n) for n = 1..14685 (Terms <= 10^9)
- Bundeswettbewerb Mathematik 2017, Die Aufgaben der 2. Runde 2017
- Bundeswettbewerb Mathematik 2017, Aufgaben und Lösungen 2. Runde 2017
- David A. Corneth, PARI program
Crossrefs
Cf. A055394.
Programs
-
Mathematica
s = Union@ Flatten@ Table[s^2 + c^3, {s, 141}, {c, 27}]; First@# & /@ Select[Partition[s, 3, 1], #[[1]] + 2 == #[[3]] &] (* Robert G. Wilson v, Jan 07 2018 *) With[{mx=19000},Select[Partition[Union[Flatten[Table[a^2+b^3,{a,Ceiling[ Sqrt[mx]]},{b,Ceiling[Surd[mx,3]]}]]],3,1],Differences[#]=={1,1}&]][[All,1]] (* Harvey P. Dale, Sep 07 2020 *)
-
PARI
is_a055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0 \\ after Charles R Greathouse IV is(n) = is_a055394(n) && is_a055394(n+1) && is_a055394(n+2) \\ Felix Fröhlich, Jan 08 2018
-
PARI
See Corneth Link \\ David A. Corneth, Mar 15 2019
Comments