A295874 Decimal expansion of the real positive fixed point of the Dirichlet beta function.
7, 2, 6, 5, 6, 4, 1, 9, 3, 2, 7, 4, 0, 4, 3, 6, 2, 6, 4, 4, 1, 6, 2, 4, 1, 3, 0, 1, 0, 1, 1, 3, 3, 4, 1, 5, 5, 0, 4, 3, 3, 0, 8, 4, 7, 2, 3, 9, 1, 2, 0, 0, 2, 2, 4, 2, 0, 2, 8, 4, 1, 0, 3, 4, 6, 4, 5, 4, 3, 1, 7, 4, 8, 1, 3, 3, 2, 2, 0, 8, 1, 3, 2, 2, 2, 0, 2, 4, 6, 5, 7, 6, 3, 4, 1, 0, 2, 0, 7, 9, 6, 3, 4, 0, 5, 5, 6
Offset: 0
Examples
0.72656419327404362644162413010113341550433084723912002242028410346454317481...
Links
- Eric Weisstein's MathWorld, Dirichlet Beta Function.
- Wikipedia, Dirichlet beta function.
Crossrefs
Cf. A261624.
Programs
-
Maple
Digits:= 140: f:= s-> sum((-1)^n/(2*n+1)^s, n=0..infinity): fsolve(f(x)=x, x); # Alois P. Heinz, Feb 05 2018
-
Mathematica
RealDigits[ FindRoot[ DirichletBeta[x] == x, {x, 0}, WorkingPrecision -> 2^7, AccuracyGoal -> 2^8, PrecisionGoal -> 2^7][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
-
PARI
solve(x=0,1,sumalt(n=0,((-1)^n)/(2*n+1)^x)-x)