cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295874 Decimal expansion of the real positive fixed point of the Dirichlet beta function.

Original entry on oeis.org

7, 2, 6, 5, 6, 4, 1, 9, 3, 2, 7, 4, 0, 4, 3, 6, 2, 6, 4, 4, 1, 6, 2, 4, 1, 3, 0, 1, 0, 1, 1, 3, 3, 4, 1, 5, 5, 0, 4, 3, 3, 0, 8, 4, 7, 2, 3, 9, 1, 2, 0, 0, 2, 2, 4, 2, 0, 2, 8, 4, 1, 0, 3, 4, 6, 4, 5, 4, 3, 1, 7, 4, 8, 1, 3, 3, 2, 2, 0, 8, 1, 3, 2, 2, 2, 0, 2, 4, 6, 5, 7, 6, 3, 4, 1, 0, 2, 0, 7, 9, 6, 3, 4, 0, 5, 5, 6
Offset: 0

Views

Author

Michal Paulovic, Dec 31 2017

Keywords

Examples

			0.72656419327404362644162413010113341550433084723912002242028410346454317481...
		

Crossrefs

Cf. A261624.

Programs

  • Maple
    Digits:= 140:
    f:= s-> sum((-1)^n/(2*n+1)^s, n=0..infinity):
    fsolve(f(x)=x, x);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    RealDigits[ FindRoot[ DirichletBeta[x] == x, {x, 0}, WorkingPrecision -> 2^7, AccuracyGoal -> 2^8, PrecisionGoal -> 2^7][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    solve(x=0,1,sumalt(n=0,((-1)^n)/(2*n+1)^x)-x)