cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296078 Least number with the same prime signature as 1+phi(n), where phi = A000010, Euler totient function.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 6, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 6, 4, 6, 2, 6, 12, 4, 2, 4, 2, 2, 2, 2, 2, 4, 2, 6, 6, 2, 2, 4, 6, 2, 6, 2, 2, 4, 2, 12, 2, 2, 2, 6, 2, 2, 2, 2, 2, 6, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Crossrefs

Cf. A039698 (positions of 2's).

Programs

  • Mathematica
    f[n_] := Block[{ps = Last@# & /@ FactorInteger[1 + EulerPhi@n]}, Times @@ ((Prime@ Range@ Length@ ps)^ps)]; Array[f, 105] (* Robert G. Wilson v, Dec 11 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));

Formula

a(n) = A046523(A039649(n)) = A046523(1+A000010(n)).

A296092 Least number with the same prime signature as sigma(n)+1.

Original entry on oeis.org

2, 4, 2, 8, 2, 2, 4, 16, 6, 2, 2, 2, 6, 4, 4, 32, 2, 24, 6, 2, 6, 2, 4, 2, 32, 2, 2, 6, 2, 2, 6, 64, 4, 6, 4, 12, 6, 2, 6, 6, 2, 2, 12, 6, 2, 2, 4, 8, 6, 6, 2, 12, 6, 4, 2, 4, 16, 6, 2, 4, 12, 2, 30, 128, 6, 6, 6, 2, 2, 6, 2, 36, 12, 6, 8, 6, 2, 4, 16, 6, 6, 2, 6, 36, 2, 6, 4, 2, 6, 6, 2, 4, 6, 6, 4, 6, 12, 12, 2, 6, 2, 6, 30, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A088580(n)) = A046523(1+A000203(n)).

A300224 Filter sequence combining A046523(n) and A296078(n), prime signature of n and prime signature of phi(n)+1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 7, 8, 2, 6, 2, 9, 4, 4, 2, 10, 11, 4, 5, 6, 2, 12, 2, 13, 14, 4, 7, 15, 2, 4, 7, 16, 2, 17, 2, 18, 9, 4, 2, 19, 3, 18, 14, 9, 2, 16, 4, 10, 4, 4, 2, 20, 2, 4, 6, 21, 7, 22, 2, 18, 23, 12, 2, 24, 2, 4, 6, 6, 4, 12, 2, 25, 26, 4, 2, 27, 14, 4, 14, 16, 2, 27, 4, 28, 4, 4, 4, 29, 2, 6, 6, 15, 2, 22, 2, 10, 12
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A046523(n), A296078(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));
    Aux300224(n) = (1/2)*(2 + ((A296078(n)+A046523(n))^2) - A296078(n) - 3*A046523(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300224(n))),"b300224.txt");

A300225 Filter sequence combining A296078(n) and A296091(n), the prime signatures of phi(n)+1 and sigma(n)-1, with a(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 3, 4, 2, 2, 5, 2, 2, 6, 7, 2, 3, 2, 6, 2, 3, 2, 6, 8, 2, 3, 3, 2, 6, 2, 3, 9, 2, 6, 10, 2, 2, 11, 2, 2, 3, 2, 9, 11, 2, 2, 3, 12, 13, 9, 6, 2, 3, 2, 11, 2, 2, 2, 2, 2, 3, 2, 14, 6, 15, 2, 16, 17, 11, 2, 11, 2, 2, 3, 2, 3, 6, 2, 15, 18, 5, 2, 6, 9, 2, 15, 2, 2, 6, 3, 19, 2, 3, 3, 9, 2, 20, 3, 21, 2, 15, 2, 11, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A296078(n), A296091(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));
    A296091(n) = if(1==n,n,A046523(sigma(n)-1);)
    Aux300225(n) = (1/2)*(2 + ((A296078(n)+A296091(n))^2) - A296078(n) - 3*A296091(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300225(n))),"b300225.txt");
Showing 1-4 of 4 results.