A296182 Decimal expansion of (2 + phi)/2, with the golden section phi from A001622.
1, 8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6
Offset: 1
Examples
1.809016994374947424102293417182819058860154589902881431067724311352630231409451...
Programs
-
Mathematica
RealDigits[(5 + Sqrt[5])/4, 10, 111][[1]] (* Robert G. Wilson v, Jan 14 2018 *) RealDigits[(2+GoldenRatio)/2,10,120][[1]] (* Harvey P. Dale, Aug 10 2025 *)
-
PARI
(5 + sqrt(5))/4 \\ Michel Marcus, Jan 08 2018
Formula
Equals (2 + phi)/2 = (5 + sqrt(5))/4 = (2*phi - 1)*phi/2 = with phi from A001622.
Equals 1 + A019863.
From Amiram Eldar, Nov 28 2024: (Start)
Equals 1/A322159.
Equals Product_{k>=0} (1 + 1/A081003(k)). (End)
Comments