A296187 Yarborough primes that remain Yarborough primes when each of their digits are replaced by their squares.
73, 223, 233, 283, 337, 383, 523, 733, 773, 823, 2333, 2683, 2833, 2857, 3323, 3583, 3673, 3733, 3853, 5333, 6673, 6737, 6883, 7333, 7673, 7727, 7877, 8233, 8563, 8623, 22277, 22283, 22727, 23333, 23833, 25237, 25253, 25633, 26227, 26833, 27583, 27827, 27883, 32257
Offset: 1
Examples
a(1) = 73 is a prime, and replacing each of its digits by its square yields 499, which is also prime. Neither 73 nor 499 contains digits 0 or 1, so both are Yarborough primes. a(10) = 823 is a prime, and replacing each of its digits by its square gives 6449, another prime. Neither 823 nor 6449 contains digits 0 or 1, so both are Yarborough primes.
Links
- Chris C. Caldwell, Yarborough prime
Programs
-
Mathematica
k = 2; Select[Prime[Range[1000000]], Min[IntegerDigits[#]] > 1 && Min[IntegerDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] > 1 && PrimeQ[FromDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] &]
-
PARI
eva(n) = subst(Pol(n), x, 10) is_a106116(n) = ispseudoprime(n) && vecmin(digits(n)) > 1 a048385(n) = my(d=digits(n), e=[]); for(k=1, #d, d[k]=d[k]^2); for(k=1, #d, my(dd=digits(d[k])); for(t=1, #dd, e=concat(e, dd[t]))); eva(e) is(n) = is_a106116(n) && is_a106116(a048385(n)) \\ Felix Fröhlich, Mar 26 2018
Comments