cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296187 Yarborough primes that remain Yarborough primes when each of their digits are replaced by their squares.

Original entry on oeis.org

73, 223, 233, 283, 337, 383, 523, 733, 773, 823, 2333, 2683, 2833, 2857, 3323, 3583, 3673, 3733, 3853, 5333, 6673, 6737, 6883, 7333, 7673, 7727, 7877, 8233, 8563, 8623, 22277, 22283, 22727, 23333, 23833, 25237, 25253, 25633, 26227, 26833, 27583, 27827, 27883, 32257
Offset: 1

Views

Author

K. D. Bajpai, Feb 14 2018

Keywords

Comments

A Yarborough prime is a prime that does not contain digits 0 or 1.
Terms t of A106116 such that A048385(t) is also a term of A106116. - Felix Fröhlich, Feb 14 2018

Examples

			a(1) = 73 is a prime, and replacing each of its digits by its square yields 499, which is also prime. Neither 73 nor 499 contains digits 0 or 1, so both are Yarborough primes.
a(10) = 823 is a prime, and replacing each of its digits by its square gives 6449, another prime. Neither 823 nor 6449 contains digits 0 or 1, so both are Yarborough primes.
		

Crossrefs

Cf. A106116 (Yarborough primes), A048385, A052034, A296563 (digits to cubes).

Programs

  • Mathematica
    k = 2; Select[Prime[Range[1000000]], Min[IntegerDigits[#]] > 1 &&  Min[IntegerDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] > 1 && PrimeQ[FromDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] &]
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    is_a106116(n) = ispseudoprime(n) && vecmin(digits(n)) > 1
    a048385(n) = my(d=digits(n), e=[]); for(k=1, #d, d[k]=d[k]^2); for(k=1, #d, my(dd=digits(d[k])); for(t=1, #dd, e=concat(e, dd[t]))); eva(e)
    is(n) = is_a106116(n) && is_a106116(a048385(n)) \\ Felix Fröhlich, Mar 26 2018

Formula

{A106116(k): A048385(A106116(k)) in A106116}. - Felix Fröhlich, Feb 14 2018