cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296301 Decimal expansion of Product_{k>=2} k^(1/k!).

Original entry on oeis.org

1, 8, 2, 9, 0, 2, 4, 6, 7, 9, 5, 6, 3, 5, 7, 1, 8, 6, 4, 3, 8, 9, 5, 7, 2, 3, 5, 7, 3, 6, 4, 8, 8, 5, 8, 4, 9, 1, 0, 0, 7, 6, 7, 6, 3, 3, 3, 7, 2, 1, 1, 4, 1, 1, 6, 7, 3, 0, 6, 4, 4, 1, 2, 4, 6, 1, 9, 7, 0, 1, 8, 2, 5, 3, 1, 0, 1, 2, 8, 6, 0, 3, 4, 9, 7, 4, 9, 7, 2, 5, 5, 9, 4, 6, 8, 0, 7, 4, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2017

Keywords

Examples

			1.8290246795635718643895723573648858491007676333721141167306441...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Sum[ Log[k]/k!, {k, 2, 700}]], 10, 100][[1]] (* G. C. Greubel, Jul 28 2018 *)
  • PARI
    exp(suminf(k=2, log(k)/k!)) \\ Michel Marcus, Dec 11 2017

Formula

Equals (2*(3*(4*(5*(6*(7*...)^(1/7))^(1/6))^(1/5))^(1/4))^(1/3))^(1/2).
Equals exp(Sum_{k>=2} log(k)/k!).
Equals lim_{k->infinity} b(k)^(1/k!), where b(k) = k*b(k-1)^k with b(0) = 1.
Equals Product_{p prime} p^(Sum_{k>=2} (p-adic valuation of k)/k!).