A296415
Number of non-isomorphic abstract almost-equidistant graphs on n vertices in R^3. A graph G is abstract almost-equidistant in R^3 if the complement of G does not contain K_3 and G does not contain K_5 nor K_{3,3}.
Original entry on oeis.org
1, 2, 3, 7, 13, 29, 50, 69, 35, 7, 1, 0
Offset: 1
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets, arXiv:1706.06375 [math.MG], 2017.
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets [supplemental data], 2017.
A296416
Number of non-isomorphic abstract almost-equidistant graphs on n vertices in R^4. A graph G is abstract almost-equidistant in R^4 if the complement of G does not contain K_3 and G does not contain K_6 nor K_{1,3,3}.
Original entry on oeis.org
1, 2, 3, 7, 14, 37, 97, 316, 934, 2362, 2814, 944, 59, 4, 1, 1, 0
Offset: 1
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets, arXiv:1706.06375 [math.MG], 2017.
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets [supplemental data], 2017.
A296417
Number of non-isomorphic abstract almost-equidistant graphs on n vertices in R^5. A graph G is abstract almost-equidistant in R^5 if the complement of G does not contain K_3 and G does not contain K_7 nor K_{3,3,3}.
Original entry on oeis.org
1, 2, 3, 7, 14, 38, 106, 402, 1817, 11132, 86053, 803299, 7623096, 58770989
Offset: 1
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets, arXiv:1706.06375 [math.MG], 2017.
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets [supplemental data], 2017.
A296418
Number of non-isomorphic abstract almost-equidistant graphs on n vertices in R^6. A graph G is abstract almost-equidistant in R^6 if the complement of G does not contain K_3 and G does not contain K_8 nor K_{1,3,3,3}.
Original entry on oeis.org
1, 2, 3, 7, 14, 38, 107, 409, 1888, 12064, 103333, 1217849, 19170728
Offset: 1
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets, arXiv:1706.06375 [math.MG], 2017.
- Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, Almost-equidistant sets [supplemental data], 2017.
Showing 1-4 of 4 results.
Comments