cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296437 Expansion of e.g.f. log(1 + arcsinh(x))*exp(x).

Original entry on oeis.org

0, 1, 1, 1, 0, 8, -5, -51, -504, 8224, -12865, -296155, -2166736, 73348780, -116217309, -7440979651, -39733320080, 2564082122752, -3056854891489, -544155777899859, -2138400746459448, 251904027415707852, -163714875656114029, -92626483427571793931, -273784346863222483272
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 12 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! + x^2/2! + x^3/3! + 8*x^5/5! - 5*x^6/6! - 51*x^7/7! - 504*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(log(1+arcsinh(x))*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(ox=O(x^30)); Vecrev(Pol(serlaplace(log(1 + asinh(x + ox)) * exp(x + ox)))) \\ Andrew Howroyd, Dec 12 2017

Formula

E.g.f.: log(1 + log(x + sqrt(1 + x^2)))*exp(x).
a(n) ~ n! * 2*sqrt(2/Pi) * (Pi*c - 2*s) / (n^(3/2) * (4 + Pi^2)) * (1 + (c*(-192 + 208*Pi - 96*Pi^2 - 8*Pi^3 - 12*Pi^4 + Pi^5) - 2*s*(80 + 48*Pi - 40*Pi^2 + 24*Pi^3 + Pi^4 + 3*Pi^5)) / (4*(4 + Pi^2)^2 * (c*Pi - 2*s)*n)), where s = sin(1 - Pi*n/2) and c = cos(1 - Pi*n/2). - Vaclav Kotesovec, Dec 21 2017

A294314 Expansion of e.g.f. log(1 + x*sec(x))*exp(x).

Original entry on oeis.org

0, 1, 1, 5, 0, 64, -245, 2757, -23576, 272256, -3270977, 45055845, -671589952, 10984688636, -193875825117, 3688182769117, -75085512079184, 1630385857436224, -37596306847103457, 917765946045581357, -23641953753495247624, 640958728426947233468, -18242640219843554954221
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			log(1 + x*sec(x))*exp(x) = x/1! + x^2/2! + 5*x^3/3! + 64*x^5/5! - 245*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(log(1+x*sec(x))*exp(x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 + x Sec[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!

A296336 Expansion of e.g.f. log(1 + x*cos(x))*exp(x).

Original entry on oeis.org

0, 1, 1, -1, 0, -16, -5, 13, -1512, 12336, -98177, 444773, 1249160, -75244508, 1296229779, -15956614403, 130892534160, 59122803744, -31478991643617, 837166840532589, -14900078660739984, 181343532181629332, -480411914937891389, -54306065912649098539, 2080183542455901881320
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			log(1 + x*cos(x))*exp(x) = x/1! + x^2/2! - x^3/3! - 16*x^5/5! - 5*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(log(1 + x*cos(x))*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 + x Cos[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(exp(x)*log(1+x*cos(x))))) \\ Altug Alkan, Dec 28 2017

A297209 Expansion of e.g.f. log(1 + arcsin(x))*exp(-x).

Original entry on oeis.org

0, 1, -3, 9, -32, 148, -853, 6027, -49576, 470624, -5005137, 59454923, -774282632, 11035740844, -169997137269, 2826070412955, -50256453936368, 954657085889760, -19247168446169665, 411277539407862707, -9269937746437524256, 220085825544691181500, -5483977295221312280757
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			log(1 + arcsin(x))*exp(-x) = x/1! - 3*x^2/2! + 9*x^3/3! - 32*x^4/4! + 148*x^5/5! - 853*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(log(1+arcsin(x))*exp(-x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 + ArcSin[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Log[1 - I Log[I x + Sqrt[1 - x^2]]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(exp(-x)*log(1+asin(x))))) \\ Altug Alkan, Dec 28 2017
Showing 1-4 of 4 results.