A296435
Expansion of e.g.f. log(1 + arcsinh(x)).
Original entry on oeis.org
0, 1, -1, 1, -2, 13, -64, 173, -720, 12409, -114816, 370137, -1491456, 88556037, -1263184896, 2668274373, 21448022016, 2491377242481, -50233550831616, -34526890553679, 5153298175033344, 202383113207336829, -5453228045913292800, -25792743610973373219, 1393299559788718325760
Offset: 0
E.g.f.: A(x) = x/1! - x^2/2! + x^3/3! - 2*x^4/4! + 13*x^5/5! - 64*x^6/6! + ...
-
S:= series(ln(1+arcsinh(x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 12 2017
-
nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]], {x, 0, nmax}], x] Range[0, nmax]!
-
Vecrev(Pol(serlaplace(log(1 + asinh(x + O(x^30)))))) \\ Andrew Howroyd, Dec 12 2017
A296436
Expansion of e.g.f. log(1 + arcsin(x))*exp(x).
Original entry on oeis.org
0, 1, 1, 3, 0, 28, -85, 1029, -6440, 79136, -724305, 9982005, -118974856, 1858582100, -27126378357, 478338929509, -8227405849840, 162502213354272, -3209170996757057, 70409595412300877, -1566861832498793248, 37885426233247176772, -936732798302547171509, 24780850678372964078189
Offset: 0
E.g.f.: A(x) = x/1! + x^2/2! + 3*x^3/3! + 28*x^5/5! - 85*x^6/6! + 1029*x^7/7! - 6440*x^8/8! + ...
-
a:=series(log(1+arcsin(x))*exp(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
-
nmax = 23; CoefficientList[Series[Log[1 + ArcSin[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[1 - I Log[I x + Sqrt[1 - x^2]]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
-
my(ox=O(x^30)); Vecrev(Pol(serlaplace(log(1 + asin(x + ox)) * exp(x + ox)))) \\ Andrew Howroyd, Dec 12 2017
A295278
Expansion of e.g.f. log(1 + x*sech(x))*exp(x).
Original entry on oeis.org
0, 1, 1, -1, 0, 4, -5, 13, -392, 2112, 7663, -165067, 1011560, -2965756, -11164309, 630876517, -12760548400, 133046910432, -189966787521, -18567623055795, 392188656574896, -5061972266268844, 33655544331988203, 565132153437469165, -26647451471277927416
Offset: 0
log(1 + x*sech(x))*exp(x) = x/1! + x^2/2! - x^3/3! + 4*x^5/5! - 5*x^6/6! + ...
-
a:=series(log(1+x*sech(x))*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; CoefficientList[Series[Log[1 + x Sech[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
A297206
Expansion of e.g.f. log(1 + x*cosh(x))*exp(x).
Original entry on oeis.org
0, 1, 1, 5, 0, 44, -245, 1917, -17976, 191760, -2268017, 29862645, -432485152, 6819543964, -116400819509, 2138673633397, -42078450265744, 882702459984256, -19667723002057473, 463866294631620941, -11545312970532620104, 302416006623761207804, -8316019118849688156693
Offset: 0
log(1 + x*cosh(x))*exp(x) = x/1! + x^2/2! + 5*x^3/3! + 44*x^5/5! - 245*x^6/6! + ...
-
a:=series(log(1 + x*cosh(x))*exp(x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Log[1 + x Cosh[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
-
x='x+O('x^99); concat([0], Vec(serlaplace(exp(x)*log(1+x*cosh(x))))) \\ Altug Alkan, Dec 28 2017
A297210
Expansion of e.g.f. log(1 + arcsinh(x))*exp(-x).
Original entry on oeis.org
0, 1, -3, 7, -16, 48, -213, 1027, -4856, 32512, -309377, 2527963, -16805072, 179877332, -2916171997, 32511289795, -227822369168, 3575741575680, -98643332014049, 1352701143217491, -6534261348983096, 168508582018012980, -9094443640555413357, 143341194607564099595
Offset: 0
log(1 + arcsinh(x))*exp(-x) = x/1! - 3*x^2/2! + 7*x^3/3! - 16*x^4/4! + 48*x^5/5! - 213*x^6/6! + ...
-
a:=series(log(1+arcsinh(x))*exp(-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[Log[1 + ArcSinh[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-5 of 5 results.