A296524 Number of connected (2*k)-regular graphs on 2*n+1 nodes with maximal diameter D(n,k) A294733 written as triangular array T(n,k), 1 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 16, 4, 1, 1, 1, 266, 6, 1, 1, 5, 367860, 10786, 10, 1, 1, 19, 1
Offset: 1
Examples
Degree r 2 4 6 8 10 12 14 16 n -------------------------------------- 3 | 1 Diameter A294733 | 1 Number of graphs with this diameter (this sequence) | 5 | 2 1 | 1 1 | 7 | 3 2 1 | 1 2 1 | 9 | 4 2 2 1 | 1 16 4 1 | 11 | 5 4 2 2 1 | 1 1 266 6 1 | 13 | 6 5 2 2 2 1 | 1 5 367860 10786 10 1 | 15 | 7 6 4 2 2 2 1 | 1 19 1 ? ? 17 1 | 17 | 8 7 >=4 2 2 2 2 1 | 1 33 ? ? ? ? 25 1 . a(12)=1 corresponds to the only 4-regular graph on 11 nodes with diameter 4. Its adjacency matrix is . 1 2 3 4 5 6 7 8 9 0 1 1 . 1 1 1 1 . . . . . . 2 1 . 1 1 1 . . . . . . 3 1 1 . 1 1 . . . . . . 4 1 1 1 . . 1 . . . . . 5 1 1 1 . . 1 . . . . . 6 . . . 1 1 . 1 1 . . . 7 . . . . . 1 . . 1 1 1 8 . . . . . 1 . . 1 1 1 9 . . . . . . 1 1 . 1 1 10 . . . . . . 1 1 1 . 1 11 . . . . . . 1 1 1 1 . . A shortest walk along 4 edges is required to reach node 9 from node 1. All others of the A068934(60)=265 4-regular graphs on 11 nodes have smaller diameters, i.e., 37 with diameter 2 and 227 with diameter 3.
References
- For references see A294733.
Links
- M. Meringer, GenReg, Generation of regular graphs.
Comments