A296532 Number of nonequivalent noncrossing trees with n edges up to rotation.
1, 1, 1, 4, 11, 49, 204, 984, 4807, 24739, 130065, 701584, 3851316, 21489836, 121517768, 695307888, 4019338527, 23446201495, 137875318035, 816646459860, 4868576661795, 29196022525905, 176022384523440, 1066433501134560, 6490009520072676, 39659537885087124
Offset: 0
Keywords
Examples
Case n=3: o---o o---o o---o o---o | | \ \ / o---o o o o---o o---o In total there are 4 distinct noncrossing trees up to rotation.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
a[n_] := If[EvenQ[n], Binomial[3*n, n]/((n + 1)*(2*n + 1)), ((2*n + 1)*Binomial[(1/2)*(3*n - 1), (n - 1)/2] + Binomial[3*n, n]) / ((n + 1)*(2*n + 1))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
-
PARI
a(n)={(binomial(3*n, n)/(2*n+1) + if(n%2, binomial((3*n-1)/2, (n-1)/2)))/(n+1)}
Comments