A296548 Triangle read by rows: T(n,k) is the number of diagonalizable n X n matrices over GF(2) that have rank k, n >= 0, 0 <= k <= n.
1, 1, 1, 1, 6, 1, 1, 28, 28, 1, 1, 120, 560, 120, 1, 1, 496, 9920, 9920, 496, 1, 1, 2016, 166656, 714240, 166656, 2016, 1, 1, 8128, 2731008, 48377856, 48377856, 2731008, 8128, 1, 1, 32640, 44216320, 3183575040, 13158776832, 3183575040, 44216320, 32640, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 6, 1; 1, 28, 28, 1; 1, 120, 560, 120, 1; 1, 496, 9920, 9920, 496, 1; 1, 2016, 166656, 714240, 166656, 2016, 1; ...
Links
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Crossrefs
Cf. A132186 (row sums).
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, b(n-1, k-1)+2^k*b(n-1, k))) end: T:= (n,k)-> 2^(k*(n-k))*b(n, k): seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Dec 02 2024
-
Mathematica
nn = 8; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[ QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &, Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]
Comments