cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296548 Triangle read by rows: T(n,k) is the number of diagonalizable n X n matrices over GF(2) that have rank k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 28, 28, 1, 1, 120, 560, 120, 1, 1, 496, 9920, 9920, 496, 1, 1, 2016, 166656, 714240, 166656, 2016, 1, 1, 8128, 2731008, 48377856, 48377856, 2731008, 8128, 1, 1, 32640, 44216320, 3183575040, 13158776832, 3183575040, 44216320, 32640, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 15 2017

Keywords

Comments

Equivalently, T(n,k) is the number of n X n matrices, P, over GF(2) with rank k, such that P^2 = P.
Equivalently, T(n,k) is the number of direct sum decompositions of the vector space GF(2)^n into exactly two subspaces U and W such that the dimension of U is k.

Examples

			Triangle T(n,k) begins:
  1;
  1,    1;
  1,    6,      1;
  1,   28,     28,      1;
  1,  120,    560,    120,      1;
  1,  496,   9920,   9920,    496,    1;
  1, 2016, 166656, 714240, 166656, 2016, 1;
  ...
		

Crossrefs

Cf. A132186 (row sums).

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, b(n-1, k-1)+2^k*b(n-1, k)))
        end:
    T:= (n,k)-> 2^(k*(n-k))*b(n, k):
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Dec 02 2024
  • Mathematica
    nn = 8; g[n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[
        QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
      Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]

Formula

T(n,k)/A002884(n) is the coefficient of y^k*x^n in the expansion of Sum_{n>=0} x^n\A002884(n) * Sum_{n>=0} y*x^n\A002884(n).
T(n,k) = A002884(n)/(A002884(k)*A002884(n-k)) = A022166(n,k)*2^(k(n-k)).