A373396
Matrix inverse of triangle A296548, read by rows.
Original entry on oeis.org
1, -1, 1, 5, -6, 1, -113, 140, -28, 1, 10879, -13560, 2800, -120, 1, -4324129, 5395984, -1120960, 49600, -496, 1, 6984271295, -8717444064, 1813050624, -80709120, 833280, -2016, 1, -45479775838337, 56768157085760, -11809230892032, 526302695424, -5466697728, 13655040, -8128, 1
Offset: 0
Triangle begins
1;
-1, 1;
5, -6, 1;
-113, 140, -28, 1;
10879, -13560, 2800, -120, 1;
-4324129, 5395984, -1120960, 49600, -496, 1;
...
-
nn = 6; B[n_] = Product[q^n - q^i, {i, 0, n - 1}] /. q -> 2;e[x_] := Sum[x^n/B[n], {n, 0, nn}];Table[B[n], {n, 0, nn}]*CoefficientList[Series[ e[y x]/e[x], {x, 0, nn}], {x, y}] // Grid
A132186
Number of idempotent n X n matrices over GF(2); also number of diagonalizable n X n matrices over GF(2).
Original entry on oeis.org
1, 2, 8, 58, 802, 20834, 1051586, 102233986, 19614424834, 7355623374338, 5494866505497602, 8087844439442585602, 23834930674299549249538, 138978138716920276085366786, 1626809921636911219317749563394, 37757678575184051755732304668884994
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003 and Vladeta Jovovic, Nov 04 2007
- Alois P. Heinz, Table of n, a(n) for n = 0..81
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, T(n-1, k-1)+2^k*T(n-1, k)))
end:
a:= n-> add(2^(k*(n-k))*T(n, k), k=0...n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 06 2017
-
nn = 10; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
QFactorial[n, q]] /. q -> 2; G[z_] := Sum[z^k/g[k], {k, 0, nn}];Table[g[n], {n, 0, nn}] CoefficientList[Series[G[z]^2, {z, 0, nn}], z] (* Geoffrey Critzer, Aug 04 2017 *)
a[n_] := Block[{m}, Length@ Select[ Range[2^(n^2)], (m = Partition[ IntegerDigits[ #-1, 2, n^2], n]; Mod[m.m, 2] == m) &]]; a /@ Range[4] (* Giovanni Resta, Apr 09 2017 *)
This is the result of merging two independently submitted but identical sequences. Thanks to
Geoffrey Critzer for suggesting this. -
N. J. A. Sloane, Dec 26 2017
A378666
Triangular array read by rows: T(n,k) is the number of n X n idempotent matrices over GF(3) having rank k, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 117, 117, 1, 1, 1080, 10530, 1080, 1, 1, 9801, 882090, 882090, 9801, 1, 1, 88452, 72243171, 666860040, 72243171, 88452, 1, 1, 796797, 5873190687, 491992666011, 491992666011, 5873190687, 796797, 1, 1, 7173360, 476309310660, 360089838858960, 3267815287645062, 360089838858960, 476309310660, 7173360, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 12, 1;
1, 117, 117, 1;
1, 1080, 10530, 1080, 1;
1, 9801, 882090, 882090, 9801, 1;
...
-
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, b(n-1, k-1)+3^k*b(n-1, k)))
end:
T:= (n,k)-> 3^(k*(n-k))*b(n, k):
seq(seq(T(n,k), k=0..n), n=0..8); # Alois P. Heinz, Dec 02 2024
-
nn = 8; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; B[n_, q_] := \[Gamma][n, q]/(q - 1)^n; \[Zeta][x_] := Sum[x^n/B[n, 3], {n, 0, nn}];Map[Select[#, # > 0 &] &, Table[B[n, 3], {n,0,nn}]*CoefficientList[Series[\[Zeta][x] \[Zeta][y x], {x, 0, nn}], {x, y}]] // Flatten
A358649
Number of convergent n X n matrices over GF(2).
Original entry on oeis.org
1, 2, 11, 205, 14137, 3755249, 3916674017, 16190352314305, 266479066904477569, 17503939768635307654913, 4593798697440979773283368449, 4819699338906053452395454422580225, 20221058158328101246044232181365184919553
Offset: 0
-
nn = 12; q = 2;g[n_] := Product[q^n - q^i, {i, 0, n - 1}]; Table[Sum[g[n]/(g[k] g[n - k]) q^((n - k) (n - k - 1)), {k, 0, n}], {n, 0, nn}]
A359313
Triangular array read by rows. T(n,k) is the number of Green's H-classes contained in the D-class of rank k matrices in the semigroup Mat_n(F_2) of n X n matrices over the field F_2. n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 49, 49, 1, 1, 225, 1225, 225, 1, 1, 961, 24025, 24025, 961, 1, 1, 3969, 423801, 1946025, 423801, 3969, 1, 1, 16129, 7112889, 139499721, 139499721, 7112889, 16129, 1, 1, 65025, 116532025, 9439094025, 40315419369, 9439094025, 116532025, 65025, 1
Offset: 0
1
1, 1
1, 9, 1
1, 49, 49, 1
1, 225, 1225, 225, 1
1, 961, 24025, 24025, 961, 1
- R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, section 3.18.
-
nn = 8; B[n_, q_] := QFactorial[n, q]^2; e[x_] := Sum[x^n/B[n, 2], {n, 0, nn}]; Map[Select[#, # > 0 &] &, Table[QFactorial[n, 2]^2, {n, 0, nn}] CoefficientList[
Series[e[x] e[y x], {x, 0, nn}], {x, y}]]
A297892
Triangle read by rows. T(n,k) is the number of n X n diagonalizable matrices over GF(3) that have rank k, 0 <= k <= n, n >= 0.
Original entry on oeis.org
1, 1, 2, 1, 24, 14, 1, 234, 1638, 236, 1, 2160, 147420, 254880, 12692, 1, 19602, 12349260, 208173240, 124394292, 1783784, 1, 176904, 1011404394, 157378969440, 916910326332, 157779262368, 811523288
Offset: 0
Triangle begins
1;
1, 2;
1, 24, 14;
1, 234, 1638, 236;
1, 2160, 147420, 254880, 12692;
1, 19602, 12349260, 208173240, 124394292, 1783784;
-
nn = 5; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 3;G[n] := Sum[u z^r/g[r], {r, 0, nn}]; Grid[Map[Select[#, # > 0 &] &,Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}]^2 Sum[
z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]
A357410
a(n) is the number of covering relations in the poset P of n X n idempotent matrices over GF(2) ordered by A <= B if and only if AB = BA = A.
Original entry on oeis.org
0, 1, 12, 224, 6960, 397792, 42001344, 8547291008, 3336917303040, 2565880599084544, 3852698988517260288, 11517943538435677485056, 67829192662051610706309120, 799669932659456441970547744768, 18652191511341505602408972738871296, 873360272626100960024734923878091948032
Offset: 0
a(2) = 12 because there are A132186(2) = 8 idempotent 2 X 2 matrices over GF(2). The identity matrix covers 6 rank 1 matrices each of which covers the zero matrix for a total of 12 covering relations. Cf. A296548.
- R. P. Stanley, Enumerative Combinatorics, Vol I, second edition, page 320.
-
nn = 15; B[q_, n_] := Product[q^n - q^i, {i, 0, n - 1}]/(q - 1)^n;
e[q_, u_] := Sum[u^n/B[q, n], {n, 0, nn}];Table[B[2, n], {n, 0, nn}] CoefficientList[Series[e[2, u] u e[2, u], {u, 0, nn}], u]
Showing 1-7 of 7 results.
Comments