cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A086907 Duplicate of A132186.

Original entry on oeis.org

1, 2, 8, 58, 802, 20834, 1051586, 102233986, 19614424834, 7355623374338
Offset: 0

Views

Author

Keywords

Crossrefs

A296548 Triangle read by rows: T(n,k) is the number of diagonalizable n X n matrices over GF(2) that have rank k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 28, 28, 1, 1, 120, 560, 120, 1, 1, 496, 9920, 9920, 496, 1, 1, 2016, 166656, 714240, 166656, 2016, 1, 1, 8128, 2731008, 48377856, 48377856, 2731008, 8128, 1, 1, 32640, 44216320, 3183575040, 13158776832, 3183575040, 44216320, 32640, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 15 2017

Keywords

Comments

Equivalently, T(n,k) is the number of n X n matrices, P, over GF(2) with rank k, such that P^2 = P.
Equivalently, T(n,k) is the number of direct sum decompositions of the vector space GF(2)^n into exactly two subspaces U and W such that the dimension of U is k.

Examples

			Triangle T(n,k) begins:
  1;
  1,    1;
  1,    6,      1;
  1,   28,     28,      1;
  1,  120,    560,    120,      1;
  1,  496,   9920,   9920,    496,    1;
  1, 2016, 166656, 714240, 166656, 2016, 1;
  ...
		

Crossrefs

Cf. A132186 (row sums).

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, b(n-1, k-1)+2^k*b(n-1, k)))
        end:
    T:= (n,k)-> 2^(k*(n-k))*b(n, k):
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Dec 02 2024
  • Mathematica
    nn = 8; g[n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[
        QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
      Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]

Formula

T(n,k)/A002884(n) is the coefficient of y^k*x^n in the expansion of Sum_{n>=0} x^n\A002884(n) * Sum_{n>=0} y*x^n\A002884(n).
T(n,k) = A002884(n)/(A002884(k)*A002884(n-k)) = A022166(n,k)*2^(k(n-k)).

A290516 Number of diagonalizable n X n matrices over GF(3).

Original entry on oeis.org

1, 3, 39, 2109, 417153, 346720179, 1233891662727, 17484682043488557, 1077565432934756756289, 290674711165255613845226787, 320439909778519092353160948081831, 1554385919734090411686737202215725913181, 33245671345010828575975932818988836416481765697
Offset: 0

Views

Author

Geoffrey Critzer, Aug 04 2017

Keywords

Crossrefs

Row sums of A296605.

Programs

  • Mathematica
    nn = 12; g[ n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
        QFactorial[n, q]] /. q -> 3; G[z_] := Sum[z^k/g[k], {k, 0, nn}];Table[g[n], {n, 0, nn}] CoefficientList[Series[G[z]^3, {z, 0, nn}], z]

Formula

a(n)/A053290(n) is the coefficient of x^n in (Sum_{n>=0} x^n/A053290(n))^3.

A342245 Number of ordered pairs (S,T) of n X n idempotent matrices over GF(2) such that ST = TS = S.

Original entry on oeis.org

1, 3, 21, 339, 12483, 1074339, 219474243, 107174166147, 126918737362179, 367662330459585027, 2614066808849501254659, 45985259502347910886975491, 2009925824909891218929491103747, 218411680908756813835229484489351171, 59296916710446845619466630380450779971587
Offset: 0

Views

Author

Geoffrey Critzer, Mar 07 2021

Keywords

Comments

The components in the ordered pairs are not necessarily distinct.
The relation S<=T iff ST=TS=S gives a partial ordering on the idempotent matrices enumerated in A132186. Each length k chain (from bottom to top) in the poset corresponds to an ordered direct sum decomposition of GF(2)^n into exactly k subspaces.

Crossrefs

Programs

  • Mathematica
    nn = 13; b[n_] := q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2;
    e[x_] := Sum[x^n/b[n], {n, 0,nn}];Table[b[n],{n,0,nn}]CoefficientList[Series[e[x]^3, {x, 0, nn}], x]

Formula

Let E(x) = Sum_{n>=0} x^n/(2^binomial(n,2) * [n]A005329(n).%20Then%20E(x)%5E3%20=%20Sum">2!) where [n]_2! = A005329(n). Then E(x)^3 = Sum{n>=0} a(n)x^n/(2^binomial(n,2) * [n]_2!)

A346222 Number of semi-simple n X n matrices over GF(2).

Original entry on oeis.org

1, 2, 10, 218, 25426, 11979362, 24071588290, 195647202043778, 6352629358366433026, 829377572450912758955522, 434523953108209440907114707970, 911402584183760891982341170891585538, 7638756947617134519287879000741815013863426, 256253116935172010151547980961815772566257949204482
Offset: 0

Views

Author

Geoffrey Critzer, Jul 11 2021

Keywords

Comments

Equivalently, number of n X n matrices over GF(2) that are diagonalizable over the algebraic closure of GF(2).
Equivalently, the number of n X n matrices over GF(2) whose minimal polynomial is a product of distinct irreducible factors, i.e., the minimal polynomial is squarefree.

Crossrefs

Programs

  • Mathematica
    nn = 13; q = 2; A001037 =Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; \[Gamma]q[j_, d_] :=Table[Product[(q^d)^n - (q^d)^i, {i, 0, n - 1}], {n, 1, nn}][[j]];Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[ Series[Product[(1 + Sum[u^(j d)/\[Gamma]q[j, d], {j, 1, nn}])^
         A001037[[d]], {d, 1, nn}], {u, 0, nn}], u]

Formula

Sum_{n>=0} a(n)x^n/A002884(n) = Product_{d>=1} Sum_{j>=1} x^(j*d)/|GL_j(F_2^d)|)^A001037(d) where |GL_j(F_2^d)| is the order of the general linear group of degree j over the field with 2^d elements.

A381899 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1} such that I(x) + W(x)*(n-W(x)) = k, where I(x) is the number of inversions in x and W(x) is the number of 1's in x, n >= 0, 0 <= k <= floor(n^2/2).

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 0, 2, 2, 2, 2, 0, 0, 2, 3, 3, 4, 1, 1, 2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 6, 9, 7, 7, 5, 4, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 8, 6, 10, 12, 14, 12, 14, 10, 10, 6, 4, 2, 2
Offset: 0

Views

Author

Geoffrey Critzer, Mar 09 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A132186(n).
Sum_{k>=0} T(n,k)*3^k = A053846(n).
Sum_{k>=0} T(n,k)*q^k = the number of idempotent n X n matrices over GF(q).
It appears that if n is even the n-th row converges to 2,0,0,...,21,13,9,5,4,1,1 which is A226622 reversed, and if n is odd the sequence is twice A226635.
From Alois P. Heinz, Mar 09 2025: (Start)
Sum_{k>=0} k * T(n,k) = 3*A001788(n-1) for n>=1.
Sum_{k>=0} (-1)^k * T(n,k) = A060546(n). (End)

Examples

			Triangle T(n,k) begins:
  1;
  2;
  2, 1, 1;
  2, 0, 2, 2, 2;
  2, 0, 0, 2, 3, 3, 4, 1, 1;
  2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2;
  ...
T(4,5) = 3 because we have: {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}.
		

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember; expand(`if`(i+j=0, 1,
         `if`(i=0, 0, b(i-1, j))+`if`(j=0, 0, b(i, j-1)*z^i)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(
             expand(add(b(n-j, j)*z^(j*(n-j)), j=0..n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 09 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[CoefficientList[#, q] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z]]

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^2 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).

A086922 Number of idempotent n X n (0,1) matrices over the reals.

Original entry on oeis.org

1, 2, 8, 50, 452, 5682, 96608, 2185738, 65108492
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003

Keywords

Comments

From Torlach Rush, Jun 18 2020: (Start)
Let m(n,k) be the number of idempotent n X n (0,1) matrices with k entries equal to 1. Then:
k | m(n,k)
-----|------------------------------------------------------
0 | 1
1 | n
2 | A028895(n - 1)
3 | 19 * A000292(n - 2)
4 | ((n - 3) (n - 2) (n - 1) (35 n - 124))/8
5 | ((n - 4) (n - 3) (n - 2) (n - 1) (631 n - 2675))/120
...
Conjecture: There is no closed form expression for this sequence.
(End)

Crossrefs

Extensions

a(5)-a(6) from Torlach Rush, Jun 17 2020
a(7)-a(8) from A222821 added by Giovanni Resta, Jun 23 2020

A346201 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) such that the sum of the dimensions of their eigenspaces taken over all eigenvalues is k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 0, 2, 2, 6, 8, 48, 196, 210, 58, 5824, 23280, 27020, 8610, 802, 2887680, 11550848, 13756560, 4757260, 581250, 20834, 5821595648, 23286380544, 28097284992, 10075582800, 1369706604, 67874562, 1051586, 47317927329792, 189271709384704, 229853403924480, 83865929653632, 11957394226896, 668707460652, 14779207170, 102233986
Offset: 0

Views

Author

Geoffrey Critzer, Jul 16 2021

Keywords

Examples

			        1;
        0,        2;
        2,        6,        8;
       48,      196,      210,      58;
     5824,    23280,    27020,    8610,    802;
  2887680, 11550848, 13756560, 4757260, 581250, 20834;
		

Crossrefs

Cf. A002820 (column k=0), A132186 (main diagonal), A002416 (row sums).

Programs

  • Mathematica
    nn = 8; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] :=  Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 =
    Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];g[u_, v_] :=
    Total[Map[v^Length[#] u^Total[#]/aut[1, #] &,Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}])[[n]],
       n], {n, 1, nn}] // Grid

A358649 Number of convergent n X n matrices over GF(2).

Original entry on oeis.org

1, 2, 11, 205, 14137, 3755249, 3916674017, 16190352314305, 266479066904477569, 17503939768635307654913, 4593798697440979773283368449, 4819699338906053452395454422580225, 20221058158328101246044232181365184919553
Offset: 0

Views

Author

Geoffrey Critzer, Nov 26 2022

Keywords

Comments

A matrix A over a finite field is convergent if A^j=A^(j+1) for some j>=1. Every convergent matrix converges to an idempotent matrix. Every idempotent matrix is convergent to itself. Every nilpotent matrix is convergent to the zero matrix.

Crossrefs

Programs

  • Mathematica
    nn = 12; q = 2;g[n_] := Product[q^n - q^i, {i, 0, n - 1}]; Table[Sum[g[n]/(g[k] g[n - k]) q^((n - k) (n - k - 1)), {k, 0, n}], {n, 0, nn}]

Formula

a(n) = Sum_{k=0..n} A296548(n,k)*A053763(n-k).
Sum_{n>=0} a(n)*x^n/B(n) = f(x)*e(x) where f(x)=Sum_{n>=0} q^(n^2-n)*x^n/B(n), e(x)=Sum_{n>=0} x^n/B(n), B(n)=Product_{i=0..n-1} (q^n-q^i)/(q-1)^n, and q=2. - Geoffrey Critzer, Jan 02 2025

A285053 Multiplications between idempotent equivalence classes for n X n matrices over GF(2).

Original entry on oeis.org

1, 4, 118, 27080
Offset: 1

Views

Author

Chad Brewbaker, Apr 08 2017

Keywords

Comments

With the n X n matrices over GF(2) construct 3-tuples (a,b,c) where a*b = c. Map each of the three elements to their idempotent under self multiplication. Filter on unique 3-tuples.

Crossrefs

The idempotents are enumerated in A132186.
Showing 1-10 of 12 results. Next