A086907 Duplicate of A132186.
1, 2, 8, 58, 802, 20834, 1051586, 102233986, 19614424834, 7355623374338
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle T(n,k) begins: 1; 1, 1; 1, 6, 1; 1, 28, 28, 1; 1, 120, 560, 120, 1; 1, 496, 9920, 9920, 496, 1; 1, 2016, 166656, 714240, 166656, 2016, 1; ...
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, b(n-1, k-1)+2^k*b(n-1, k))) end: T:= (n,k)-> 2^(k*(n-k))*b(n, k): seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Dec 02 2024
nn = 8; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[ QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &, Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]
nn = 12; g[ n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[ QFactorial[n, q]] /. q -> 3; G[z_] := Sum[z^k/g[k], {k, 0, nn}];Table[g[n], {n, 0, nn}] CoefficientList[Series[G[z]^3, {z, 0, nn}], z]
nn = 13; b[n_] := q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; e[x_] := Sum[x^n/b[n], {n, 0,nn}];Table[b[n],{n,0,nn}]CoefficientList[Series[e[x]^3, {x, 0, nn}], x]
nn = 13; q = 2; A001037 =Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; \[Gamma]q[j_, d_] :=Table[Product[(q^d)^n - (q^d)^i, {i, 0, n - 1}], {n, 1, nn}][[j]];Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[ Series[Product[(1 + Sum[u^(j d)/\[Gamma]q[j, d], {j, 1, nn}])^ A001037[[d]], {d, 1, nn}], {u, 0, nn}], u]
Triangle T(n,k) begins: 1; 2; 2, 1, 1; 2, 0, 2, 2, 2; 2, 0, 0, 2, 3, 3, 4, 1, 1; 2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2; ... T(4,5) = 3 because we have: {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}.
b:= proc(i, j) option remember; expand(`if`(i+j=0, 1, `if`(i=0, 0, b(i-1, j))+`if`(j=0, 0, b(i, j-1)*z^i))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))( expand(add(b(n-j, j)*z^(j*(n-j)), j=0..n))): seq(T(n), n=0..10); # Alois P. Heinz, Mar 09 2025
nn = 7; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[CoefficientList[#, q] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z]]
1; 0, 2; 2, 6, 8; 48, 196, 210, 58; 5824, 23280, 27020, 8610, 802; 2887680, 11550848, 13756560, 4757260, 581250, 20834;
nn = 8; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];g[u_, v_] := Total[Map[v^Length[#] u^Total[#]/aut[1, #] &,Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}])[[n]], n], {n, 1, nn}] // Grid
nn = 12; q = 2;g[n_] := Product[q^n - q^i, {i, 0, n - 1}]; Table[Sum[g[n]/(g[k] g[n - k]) q^((n - k) (n - k - 1)), {k, 0, n}], {n, 0, nn}]
Comments