cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296601 L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^k) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 9, 28, 81, 126, 330, 344, 833, 973, 1754, 1332, 5034, 2198, 5658, 8688, 13313, 4914, 28779, 6860, 54106, 45752, 33482, 12168, 254954, 93751, 78906, 255880, 505698, 24390, 1510700, 29792, 1671169, 1791312, 647114, 2819544, 12637371, 50654, 2282346, 14779520, 34058298, 68922, 68084220
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 81*x^4/4 + 126*x^5/5 + 330*x^6/6 + 344*x^7/7 + 833*x^8/8 + 973*x^9/9 + ...
exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 42*x^4 + 103*x^5 + 289*x^6 + 690*x^7 + 1771*x^8 + 4206*x^9 + ... + A266941(n)*x^n + ...
		

Crossrefs

Column k=2 of A308502.

Programs

  • Mathematica
    nmax = 42; Rest[CoefficientList[Series[-Log[Product[(1 - k x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 42; Rest[CoefficientList[Series[Sum[k^3 x^k/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Sum[d^(n/d + 2), {d, Divisors[n]}]; Table[a[n], {n, 1, 42}]
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>=1} k^3*x^k/(1 - k*x^k).
a(n) = Sum_{d|n} d^(n/d+2).
a(p) = p^3 + 1 where p is a prime.
From Seiichi Manyama, Jun 24 2019: (Start)
Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>0, by a(n) = Sum_{d|n} d*f(d)*g(d)^(n/d).
L.g.f.: -log(Product_{n>0} (1 - g(n)*x^n)^f(n)) = Sum_{n>0} a(n)*x^n/n. (See A266964.)
If we set f(n) = n and g(n) = n, we get this sequence. (End)