cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296525 Maximal diameter of connected k-regular graphs on 2*n nodes written as array T(n,k), 2 <= k < 2*n.

Original entry on oeis.org

2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 2, 5, 5, 3, 2, 2, 2, 2, 1, 6, 6, 4, 3, 2, 2, 2, 2, 2, 1, 7, 8, 5, 5, 3, 2, 2, 2, 2, 2, 2, 1, 8, 9, 7, 5
Offset: 2

Views

Author

Hugo Pfoertner, Dec 14 2017

Keywords

Comments

The results were found by applying the Floyd-Warshall algorithm to the output of Markus Meringer's GenReg program.

Examples

			Table starts:
Degree = 2  3  4  5  6  7  8  9
n= 4 :   2  1
n= 6 :   3  2  2  1
n= 8 :   4  3  2  2  2  1
n=10 :   5  5  3  2  2  2  2  1
...
See example in A296526 for a complete illustration of the irregular table.
		

Crossrefs

Cf. A068934, A294732 (2nd column of table), A294733, A296524, A296526, A296621.

Extensions

a(46) corresponding to the quintic graph on 16 nodes from Hugo Pfoertner, Dec 19 2017

A296526 Number of connected k-regular graphs on 2*n nodes with maximal diameter D(n,k) A296525 written as array T(n,k), 2 <= k < 2*n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 6, 3, 1, 1, 1, 1, 35, 60, 21, 5, 1, 1, 1, 2, 16, 2391, 7849, 1547, 94, 9, 1, 1, 1, 1, 58, 1, 2757433, 21609301, 3459386, 88193, 540, 13, 1, 1, 1, 4, 1, 154
Offset: 2

Views

Author

Hugo Pfoertner, Dec 14 2017

Keywords

Examples

			                               Degree r
        2   3   4   5    6        7        8     9   10   11 12 13 14 15
   n  ------------------------------------------------------------------
   4 |  2   1  Diameter A296525
     |  1   1  Number of graphs with this diameter (this sequence)
     |
   6 |  3   2   2   1
     |  1   2   1   1
     |
   8 |  4   3   2   2    2        1
     |  1   3   6   3    1        1
     |
  10 |  5   5   3   2    2        2       2      1
     |  1   1  35  60   21        5       1      1
     |
  12 |  6   6   4   3    2        2       2      2    2    1
     |  1   2  16 2391 7849     1547     94      9    1    1
     |
  14 |  7   8   5   5    3        2       2      2    2    2  2  1
     |  1   1  58   1 2757433 21609301 3459386 88193 540  13  1  1
     |                 lower bounds
  16 |  8   9   7   5  >=4      >=3       2      2    2    2  2  2  2  1
     |  1   4   1  154   ?        ?       ?      ?    ?    ?4207 21 1  1
     |              lower bounds
  18 |  9  11 >=8 >=6  >=4      >=4     >=3      2    2    2  2  2  2  2
     |  1   1   ?   ?    ?        ?       ?      ?    ?    ?  ? ?42110 33
.
a(35)=1 corresponds to the only 5-regular graph on 14 nodes with diameter 5.
Its adjacency matrix is
.
      1 2 3 4 5 6 7 8 9 0 1 2 3 4
   1  . 1 1 1 1 1 . . . . . . . .
   2  1 . 1 1 1 1 . . . . . . . .
   3  1 1 . 1 1 . 1 . . . . . . .
   4  1 1 1 . . 1 1 . . . . . . .
   5  1 1 1 . . 1 1 . . . . . . .
   6  1 1 . 1 1 . 1 . . . . . . .
   7  . . 1 1 1 1 . 1 . . . . . .
   8  . . . . . . 1 . 1 1 1 1 . .
   9  . . . . . . . 1 . 1 1 . 1 1
  10  . . . . . . . 1 1 . . 1 1 1
  11  . . . . . . . 1 1 . . 1 1 1
  12  . . . . . . . 1 . 1 1 . 1 1
  13  . . . . . . . . 1 1 1 1 . 1
  14  . . . . . . . . 1 1 1 1 1 .
.
A shortest walk along 5 edges is required to reach node 13 from node 1.
All others of the A068934(97)=3459383 5-regular graphs on 14 nodes have smaller diameters, i.e., 258474 with diameter 2, 3200871 with diameter 3, and 37 with diameter 4 (see A296621).
		

References

  • See A296525 for references and links.

Crossrefs

Showing 1-2 of 2 results.