cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304662 Total number of domino tilings of Ferrers-Young diagrams summed over all partitions of 2n.

Original entry on oeis.org

1, 2, 6, 16, 42, 106, 268, 650, 1580, 3750, 8862, 20598, 47776, 109248, 248966, 562630, 1264780, 2823958, 6282198, 13884820, 30590124, 67051982, 146463790, 318588916, 690882926, 1492592450, 3215372064, 6904561416, 14786529836, 31574656096, 67261524262
Offset: 0

Views

Author

Alois P. Heinz, May 16 2018

Keywords

Examples

			a(2) = 6:
._.  .___.  ._._.  .___.  ._.___.  .___.___.
| |  |___|  | | |  |___|  | |___|  |___|___|
|_|  | |    |_|_|  |___|  |_|
| |  |_|
|_|
		

Crossrefs

Row sums of A304718.
Bisection (even part) of A304680.

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
                      +b(n-i, min(n-i, i), [l[], i])):
    a:= n-> b(2*n$2, []):
    seq(a(n), n=0..12);
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l]>0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]]-1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f]>0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k>1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k-1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
    b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]];
    a[n_] := b[2n, 2n, {}];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..A304790(n)} k * A304789(n,k).
a(n) = Sum_{k=0..n} A304718(n,k).
a(n) = A296625(n) for n < 7.

A296624 a(n) is the total multiplicity of all products of Schur functions s(lambda)*s(mu) with partition lambda >= mu and size(lambda) + size(mu)= n.

Original entry on oeis.org

1, 1, 4, 7, 20, 37, 90, 171, 378, 721, 1500, 2843, 5682, 10661, 20674
Offset: 0

Views

Author

Wouter Meeussen, Dec 17 2017

Keywords

Comments

The condition lambda >= mu restricts the results to the lower triangular part of the matrix formed by products of all pairs of partitions.
'Multiplicity' signifies that terms like k*s(nu) count as k terms.

Examples

			For n=3 we have
s(3)*s(0) = s(3); s(2,1)*s(0) = s(2,1); s(1,1,1)*s(0) = s(1,1,1)
s(2)*s(1) = s(3) + s(2,1) and
s(1,1)*s(1) = s(2,1) + s(1,1,1)
for a total of 3+2+2 = 7 terms.
		

Crossrefs

Programs

  • Mathematica
    Tr/@ Table[Sum[
      Length[LRRule[\[Lambda], \[Mu]]], {\[Lambda],
       Partitions[n - i]}, {\[Mu],
       If[2 i === n, Join[{\[Lambda]}, lesspartitions[\[Lambda]]],
        Partitions[i]]}], {n, 14}, {i, 0, Floor[(n)/2]}]; (* Uses functions defined in the 'Toolbox for symmetric functions', see Links. *)

A296626 a(n) is the total multiplicity of all products of Schur functions s(lambda)*s(mu) with size(lambda) + size(mu) = n.

Original entry on oeis.org

1, 2, 6, 14, 34, 74, 164, 342, 714, 1442, 2894, 5686, 11096, 21322, 40688
Offset: 0

Views

Author

Wouter Meeussen, Dec 17 2017

Keywords

Comments

Equals 2*A296624 - aerated version of A296625, so s(lambda)*s(mu) is counted again as s(mu)*s(lambda) if mu <> lambda. The aerated version of A296625 reads as 1, 0, 2, 0, 6, 0, 16, 0, 42, 0, 106, 0, ...

Crossrefs

For a program see A296624 and A296625.
Showing 1-3 of 3 results.