A296624 a(n) is the total multiplicity of all products of Schur functions s(lambda)*s(mu) with partition lambda >= mu and size(lambda) + size(mu)= n.
1, 1, 4, 7, 20, 37, 90, 171, 378, 721, 1500, 2843, 5682, 10661, 20674
Offset: 0
Examples
For n=3 we have s(3)*s(0) = s(3); s(2,1)*s(0) = s(2,1); s(1,1,1)*s(0) = s(1,1,1) s(2)*s(1) = s(3) + s(2,1) and s(1,1)*s(1) = s(2,1) + s(1,1,1) for a total of 3+2+2 = 7 terms.
Links
- Wouter Meeussen, Mathematica toolbox for symmetric functions
Programs
-
Mathematica
Tr/@ Table[Sum[ Length[LRRule[\[Lambda], \[Mu]]], {\[Lambda], Partitions[n - i]}, {\[Mu], If[2 i === n, Join[{\[Lambda]}, lesspartitions[\[Lambda]]], Partitions[i]]}], {n, 14}, {i, 0, Floor[(n)/2]}]; (* Uses functions defined in the 'Toolbox for symmetric functions', see Links. *)
Comments