cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296953 Number of bisymmetric, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n}.

Original entry on oeis.org

0, 1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470, 6442450942, 12884901886
Offset: 0

Views

Author

J. Devillet, Dec 22 2017

Keywords

Comments

Apart from the offset the same as A033484. - R. J. Mathar, Alois P. Heinz, Jan 02 2018

Programs

  • Mathematica
    Nest[Append[#, 2 Last@ # + 2] &, {0, 1}, 32] (* or *)
    Array[3*2^(# - 1) - 2 + Boole[# == 0]/2 &, 34, 0] (* or *)
    CoefficientList[Series[x (1 + x)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    concat(0, Vec(x*(1 + x) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

a(0)=0, a(1)=1, a(n+1)-2*a(n) = 2.
From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 + x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*2^(n-1) - 2 for n>0.
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)

Extensions

G.f. replaced by a better g.f. by Colin Barker, Dec 23 2017