cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296965 Expansion of x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182
Offset: 0

Views

Author

J. Devillet, Dec 22 2017

Keywords

Comments

a(n) = A000225(n)-1, a(0)=0, a(1)=1. Number of quasilinear weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1<...
Essentially the same as A095121 and A000918. - R. J. Mathar, Jan 02 2018

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x + 2 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* or *)
    LinearRecurrence[{3, -2}, {0, 1, 2, 6}, 34] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    concat(0, Vec(x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)).
a(n) = 2^n - 2 for n>1.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3. (End)
a(n) = A134067(n-2) for n >= 3. - Georg Fischer, Oct 30 2018
E.g.f.: 1 + exp(x)*(exp(x) - 2) + x. - Stefano Spezia, May 07 2023