cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297195 Number of bitriangular permutations (row sums of A272644 if that triangle is prefixed with two rows for n=0,1).

Original entry on oeis.org

1, 0, 1, 2, 7, 28, 133, 726, 4483, 30896, 235105, 1957930, 17712799, 172980804, 1813760317, 20323234814, 242353047355, 3064550705752, 40958281206169, 576917769130578, 8541793624670551, 132623408805525740, 2154730841214003061, 36560670776303600422, 646697046042017004787
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2018

Keywords

Comments

Define c(n) = Sum_{m=2..n-1} C(n-1, m-1)^(-2). Define b(1) = x and b(n+1) = b(n) + (Sum_{m=2..n-1} b(m)*b(n+1-m)*C(n-1, m-1)^(-2))/n^2 for n>0. Then b(n) is a polynomial in x and so is (b(n+1)-b(n))/x^2 whose constant term is c(n)/n^2. The Hone et.al.[2002] link denotes x with alpha_2 and alpha_k = (k-1)!^2*b(k). Conjecture: Asymptotic expansion of c(n) = 2*Sum_{i>1} a(i)/n^i. - Michael Somos, Oct 17 2024

Examples

			G.f. = 1 + x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 133*x^6 + 726*x^7 + ... - _Michael Somos_, Oct 17 2024
		

Crossrefs

Cf. A272644.

Programs

  • Maple
    A297195 := proc(n)
        add(A272644(n, m), m=0..n) ;
    end proc:
    seq(A297195(n), n=0..30) ; # R. J. Mathar, Mar 04 2018
  • Mathematica
    A272644[n_, m_] := Sum[StirlingS2[m+1, i+1] (-1)^(m-i) i^(n-m) i!, {i, 0, m}];
    a[n_] := If[n == 1, 1, Sum[A272644[n, m], {m, 1, n-1}]];
    Array[a, 24] (* Jean-François Alcover, Apr 03 2020 *)
  • PARI
    {a(n) = if(n<2, n==0, sum(m=1, n-1, sum(i=0, m, (-1)^(m-i)*i^(n-m)*i!*stirling(m+1, i+1, 2))))}; /* Michael Somos, Oct 17 2024 */

Extensions

Some terms corrected by Alois P. Heinz, Oct 17 2024