A297306 Primes p such that q = 4*p+1 and r = (2*p+1)/3 are also primes.
7, 43, 79, 163, 673, 853, 919, 1063, 1429, 1549, 1663, 2143, 2683, 3229, 3499, 4993, 5119, 5653, 5779, 6229, 6343, 7333, 7459, 7669, 8353, 8539, 8719, 9829, 10009, 10243, 10303, 11383, 11689, 12583, 13399, 14149, 14653, 14923, 15649, 16603, 17053, 17389, 17749
Offset: 1
Keywords
Examples
Prime p = 7 is in the sequence because q = 4*7+1 = 29 and r = (2*7+1)/3 = 5 are also primes.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) option remember; local p; p:= `if`(n=1, 1, a(n-1)); do p:= nextprime(p); if irem(p, 3)=1 and isprime(4*p+1) and isprime((2*p+1)/3) then break fi od; p end: seq(a(n), n=1..50); # Alois P. Heinz, Jan 07 2018
-
Mathematica
a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[Mod[p, 3] == 1 && PrimeQ[4p+1] && PrimeQ[(2p+1)/3], Break[]]]; p]; Array[a, 50] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
PARI
isok(p) = isprime(p) && isprime(4*p+1) && iferr(isprime((2*p+1)/3), E, 0); \\ Michel Marcus, Nov 27 2020
Extensions
More terms from Alois P. Heinz, Jan 07 2018
Comments