cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309738 Primes of the form b^2*10^(2*k) + b*10^k + 1 for 1 <= b <= 9, k >= 0.

Original entry on oeis.org

3, 7, 13, 31, 43, 73, 421, 2551, 6481, 8191, 250501, 4002001, 64008001, 81009001, 40000200001, 90000300001, 64000008000001, 400000000020000000001, 3600000000060000000001, 64000000000008000000000001, 90000000000000300000000000001, 250000000000000500000000000001
Offset: 1

Views

Author

Seiichi Manyama, Aug 15 2019

Keywords

Examples

			b | Primes of the form b^2*10^(2*k) + b*10^k + 1
--+-------------------------------------------------------------
1 | 3.
2 | 7, 421, 4002001, 40000200001, 400000000020000000001, ...
3 | 13, 90000300001, 90000000000000300000000000001, ...
4 |
5 | 31, 2551, 250501, 250000000000000500000000000001, ...
6 | 43, 3600000000060000000001, ...
7 |
8 | 73, 6481, 64008001, 64000008000001, ...
9 | 8191, 81009001, 810000000000000000900000000000000001, ...
		

Crossrefs

Numbers k such that b^2*10^(2*k) + b*10^k + 1 are prime: A297422 (b=2), A306751 (b=3), A308449 (b=5), A309582 (b=6), A309719 (b=8), A309744 (b=9).
Cf. A309739.

A296444 Numbers k such that 2*10^(2k) + 2*10^k + 1 are prime.

Original entry on oeis.org

0, 2, 3, 6, 10, 276, 746, 1090, 1485, 6186, 8571, 15594
Offset: 1

Views

Author

Patrick A. Thomas, Dec 13 2017

Keywords

Comments

Numbers of this form divide 4*10^(4k)+1.
a(13) > 20000. - Michael S. Branicky, May 01 2025

Examples

			5, 20201, 2002001, 2000002000001, and 200000000020000000001 are prime, while 221=13*17, 200020001=569*351529, and 20000200001=17*29*1129*35933.
		

Crossrefs

See A296443 for 2*10^(2k)-2*10^k+1.

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[2*10^(2 #) + 2*10^# + 1], #, Nothing] &, Range@ 6500] (* Robert G. Wilson v, Dec 13 2017 *)
  • PARI
    isok(k) = isprime(2*10^(2*k)+2*10^k+1); \\ Michel Marcus, Dec 13 2017

Extensions

a(6)-a(7) from Michel Marcus, Dec 13 2017
a(8)-a(10) from Robert G. Wilson v, Dec 13 2017
a(1) = 0 inserted by Seiichi Manyama, Aug 15 2019
a(11) from Michael S. Branicky, Apr 16 2023
a(12) from Michael S. Branicky, Apr 30 2025
Showing 1-2 of 2 results.