cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309739 Primes of the form b*10^(2*k) + b*10^k + 1 for 1 <= b <= 9, k >= 0.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 331, 661, 881, 991, 20201, 60601, 90901, 2002001, 5005001, 300030001, 600060001, 50000500001, 2000002000001, 8000008000001, 9000009000001, 3000000003000000001, 200000000020000000001, 80000000000800000000001
Offset: 1

Views

Author

Seiichi Manyama, Aug 15 2019

Keywords

Examples

			b | Primes of the form b*10^(2*k) + b*10^k + 1
--+-------------------------------------------------------------
1 | 3.
2 | 5, 20201, 2002001, 2000002000001, 200000000020000000001, ...
3 | 7, 331, 300030001, 3000000003000000001.
4 |
5 | 11, 5005001, 50000500001, ...
6 | 13, 661, 60601, 600060001, ...
7 |
8 | 17, 881, 8000008000001, 80000000000800000000001, ...
9 | 19, 991, 90901, 9000009000001, 9000000000009000000000001, ...
		

Crossrefs

Numbers k such that b*10^(2*k) + b*10^k + 1 are prime: A296444 (b=2), A309740 (b=5), A309741 (b=6), A309742 (b=8), A309743 (b=9).
Primes of the form b*10^(2*k) + b*10^k + 1: A160432 (b=3).
Cf. A309738.

A030481 Squares of primes, with property that all even digits occur together and all odd digits occur together.

Original entry on oeis.org

4, 9, 25, 49, 289, 841, 2209, 2809, 4489, 6241, 6889, 22201, 22801, 24649, 66049, 80089, 208849, 426409, 466489, 822649, 2042041, 2468041, 2866249, 2886601, 4068289, 6046681, 6086089, 6466849, 6806881, 6848689, 8082649, 8288641, 8462281, 8826841, 22648081, 26020201, 26822041, 28440889, 44262409
Offset: 1

Views

Author

Keywords

Comments

Since the 10's digit of any odd square is even, all digits except the last must be even. - Robert Israel, Jan 04 2024

Crossrefs

Includes (2*10^(2k) + 2*10^k + 1)^2 for k in A296444.

Programs

  • Maple
    filter:= proc(n) local L;
      convert(convert(floor(n/10),base,10),set) mod 2 = {0}
    end proc:
    [4, 9, op(select(filter, [seq(ithprime(i)^2, i=3..20000)]))]; # Robert Israel, Jan 04 2024

Extensions

More terms from Robert Israel, Jan 04 2024

A296443 Numbers k such that 2*10^(2k)-2*10^k+1 is prime.

Original entry on oeis.org

1, 2, 6, 7, 8, 315, 667, 5125, 7301, 10500, 11096
Offset: 1

Views

Author

Patrick A. Thomas, Dec 13 2017

Keywords

Comments

Numbers of this form divide 4*10^(4k)+1.
a(8) > 5000. - Jon E. Schoenfield, Dec 16 2017
a(12) > 25000. - Michael S. Branicky, Aug 08 2024

Examples

			181, 19801, 1999998000001, 199999980000001, and 19999999800000001 are prime, while 1998001=277*7213, 199980001=13*41*457*821, and 19999800001=53*5953*63389.
		

Crossrefs

See A296444 for 2*10^(2k)+2*10^k+1.

Programs

  • Mathematica
    ParallelMap[If[PrimeQ[2*10^(2 #) - 2*10^# + 1], #, Nothing] &, Range@ 4000] (* Robert G. Wilson v, Dec 13 2017 *)
  • PARI
    isok(k) = isprime(2*10^(2*k)-2*10^k+1); \\ Michel Marcus, Dec 13 2017

Extensions

a(6)-a(7) from Michel Marcus, Dec 13 2017
a(8)-a(11) from Michael S. Branicky, Mar 31 2023
Showing 1-3 of 3 results.