A297474 Number of maximal matchings in the n-cocktail party graph.
1, 2, 14, 92, 844, 9304, 121288, 1822736, 31030928, 590248736, 12406395616, 285558273472, 7143371664064, 192972180052352, 5598713198048384, 173627942889668864, 5731684010612723968, 200669613102747214336, 7426773564495661485568, 289713958515451427511296
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
Crossrefs
Cf. A053871.
Programs
-
Mathematica
Table[(-1)^(n + 1) (n HypergeometricPFQ[{1/2, 1 - n}, {}, 2] - HypergeometricPFQ[{1/2, -n}, {}, 2]), {n, 20}] Table[-I (-1)^n (n HypergeometricU[1/2, n + 1/2, -1/2] - HypergeometricU[1/2, n + 3/2, -1/2])/Sqrt[2], {n, 20}]
-
PARI
\\ here b(n) is A053871. b(n)={if(n<1, n==0, sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(2*k)!/(2^k*k!)))} a(n)=b(n) + n*b(n-1); \\ Andrew Howroyd, Dec 30 2017
Formula
Extensions
a(9)-a(20) from Andrew Howroyd, Dec 30 2017
Comments