A297624 Numbers k such that Fibonacci(2*k+1) and Fibonacci(2*k-1) are prime.
2, 3, 6, 216, 285
Offset: 1
Examples
2 is in the sequence because F(3)=2 and F(5)=5 are prime. 6 is in the sequence because F(11)=89 and F(13)=233 are prime.
Programs
-
GAP
o := [];; for k in [1..500] do if IsPrime(Fibonacci(2*k+1)) and IsPrime(Fibonacci(2*k-1)) then Add(o,k); fi; od; A297624 := o; # Muniru A Asiru, Jan 25 2018
-
Magma
[n: n in [0..700] | IsPrime(Fibonacci(2*n+1)) and IsPrime(Fibonacci(2*n-1))];
-
Maple
with(combinat, fibonacci): select(k -> isprime(fibonacci(2*k+1)) and isprime(fibonacci(2*k-1)), [$1..500]); # Muniru A Asiru, Jan 25 2018
-
Mathematica
Select[Range[0, 3000], PrimeQ[Fibonacci[2 # + 1]] && PrimeQ[Fibonacci[2 # - 1]] &]
-
PARI
isok(n) = isprime(fibonacci(2*n-1)) && isprime(fibonacci(2*n+1)); \\ Michel Marcus, Jan 08 2018
-
Python
from sympy import isprime A297624_list, k, a, b, c, aflag = [], 1, 1, 1, 2, False while k < 1000: cflag = isprime(c) if aflag and cflag: A297624_list.append(k) k, a, b, c, aflag = k + 1, c, b + c, b + 2*c, cflag # Chai Wah Wu, Jan 23 2018
Formula
From Chai Wah Wu, Jan 23 2018: (Start)
For n > 1, a(n) == 0 mod 3 as otherwise Fibonacci(2*k+1) or Fibonacci(2*k-1) is even. (End)
Comments