cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303505 Number of odd chordless cycles in the n-triangular (Johnson) graph.

Original entry on oeis.org

0, 0, 0, 12, 72, 612, 3552, 34632, 247824, 3047544, 26502624, 396071604, 4055072664, 71316639036, 839706878016, 16982482829136, 225984627860256, 5165674068939696, 76644407669629248, 1953726395279874588, 31974794507569558248, 899186672783502993108, 16089847137602083031328
Offset: 2

Views

Author

Eric W. Weisstein, Apr 25 2018

Keywords

Comments

Equivalently, the number of cycles in the complete graph with odd length greater than three. - Andrew Howroyd, Apr 28 2018

Crossrefs

Cf. A297670.

Programs

  • Mathematica
    Array[Sum[Binomial[#, 2 k + 1] (2 k)!/2, {k, 2, Ceiling[#/2] - 1}] &, 23, 2] (* Michael De Vlieger, Apr 28 2018 *)
    Table[Sum[Binomial[n, 2 k + 1] (2 k)!/2, {k, 2, Ceiling[n/2] - 1}], {n, 2, 20}] (* Eric W. Weisstein, Apr 29 2018 *)
    Join[{0, 0, 0}, Table[12 Binomial[n, 5] HypergeometricPFQ[{1, 5/2, (5 - n)/2, 3 - n/2}, {7/2}, 4], {n, 5, 20}]] (* Eric W. Weisstein, Apr 29 2018 *)
  • PARI
    a(n)=sum(k=2, n\2, binomial(n, 2*k+1)*(2*k)!/2) \\ Andrew Howroyd, Apr 28 2018

Formula

a(n) = Sum_{k=2, ceiling(n/2)-1} binomial(n, 2*k+1)*(2*k)!/2. - Andrew Howroyd, Apr 28 2018
a(n) ~ sqrt(Pi) * (exp(2) - (-1)^n) * n^(n - 1/2) / (2^(3/2) * exp(n+1)). - Vaclav Kotesovec, Apr 27 2024

Extensions

a(9)-a(24) from Andrew Howroyd, Apr 28 2018

A362543 Number of chordless cycles of length >= 4 in the tetrahedral (Johnson) graph.

Original entry on oeis.org

1134, 39651, 5171088, 2660896170, 4613923014804
Offset: 6

Views

Author

Eric W. Weisstein, Apr 24 2023

Keywords

Crossrefs

Extensions

a(9)-a(10) from Pontus von Brömssen, Apr 29 2023
Showing 1-2 of 2 results.