cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114710 Number of hill-free Schroeder paths of length 2n that have no horizontal steps on the x-axis.

Original entry on oeis.org

1, 0, 2, 6, 26, 114, 526, 2502, 12194, 60570, 305526, 1560798, 8058714, 41987106, 220470942, 1165553718, 6198683090, 33140219946, 178012804678, 960232902606, 5199384505226, 28250295397170, 153977094874862, 841656387060006
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2005

Keywords

Comments

A Schroeder path of length 2n is a lattice path from (0, 0) to (2n, 0) consisting of U = (1,1), D = (1,-1) and H = (2,0) steps and never going below the x-axis. A hill is a peak at height 1.
Hankel transform is 2^C(n+1,2) (A006125(n+1)). Hankel transform of a(n+1) is (2-2^(n+1))*2^C(n+1,2). - Paul Barry, Oct 31 2008

Examples

			a(3) = 6 because we have UHHD, UHUDD, UUDHD, UUDUDD, UUHDD and UUUDDD.
		

Crossrefs

Column 0 of A114709.

Programs

  • Maple
    G:=2/(1+3*z+sqrt(1-6*z+z^2)): Gser:=series(G,z=0,32):
    1,seq(coeff(Gser,z^n),n=1..27);
    # Alternative:
    a := proc(n) option remember; if n < 3 then return [1, 0, 2, 6][n+1] fi;
    ((4 - 2*n)*a(n-3) + (16*n - 11)*a(n-1) + 9*n*a(n-2))/(3*n + 3) end:
    seq(a(n), n = 0..23); # Peter Luschny, Nov 10 2022
  • Mathematica
    A114710[n_] := (-1)^n Sum[Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 2], {k, 0, n}]; Table[A114710[n], {n, 0, 23}] (* Peter Luschny, Jan 08 2018 *)
    InverseInvertTransform[ser_, n_] := CoefficientList[Series[ser/(1 + x ser), {x, 0, n}], x]; LittleSchroeder := (1 + x - Sqrt[1 - 6 x + x^2])/(4 x); (* A001003 *)
    InverseInvertTransform[LittleSchroeder, 23] (* Peter Luschny, Jan 10 2019 *)

Formula

G.f.: A(x) = 2/(1+3*x+sqrt(1-6*x+x^2)).
D-finite with recurrence 3*(n+1)*a(n) +(11-16*n)*a(n-1) -9*n*a(n-2) +2*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 07 2012
G.f.: 1/(Q(0) + 2*x) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = (-1)^n*Sum_{k=0..n} binomial(n, k)*hypergeom([k - n, n + 1], [k + 2], 2). - Peter Luschny, Jan 08 2018
O.g.f. A(x) = 1/x * series reversion of x*(1 - 3*x)/((1 - x)*(1 - 2*x)). Cf. A297705. - Peter Bala, Nov 08 2022
a(n) ~ (9 + 4*sqrt(2)) * (1 + sqrt(2))^(2*n + 1) / (49 * sqrt(Pi) * 2^(3/4) * n^(3/2)). - Vaclav Kotesovec, Nov 10 2022

A297899 Triangle read by rows, T(n, k) = binomial(n, k)*hypergeom([k-n, n+1], [k+2], -4), for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 5, 1, 45, 10, 1, 505, 115, 15, 1, 6345, 1460, 210, 20, 1, 85405, 19765, 2990, 330, 25, 1, 1204245, 279710, 43635, 5220, 475, 30, 1, 17558705, 4088615, 651165, 81955, 8275, 645, 35, 1, 262577745, 61254760, 9901860, 1290520, 139350, 12280, 840, 40, 1
Offset: 0

Views

Author

Peter Luschny, Jan 08 2018

Keywords

Examples

			Triangle starts:
[0]       1
[1]       5,      1
[2]      45,     10,     1
[3]     505,    115,    15,    1
[4]    6345,   1460,   210,   20,   1
[5]   85405,  19765,  2990,  330,  25,  1
[6] 1204245, 279710, 43635, 5220, 475, 30, 1
		

Crossrefs

T(n, 0) = A133305(n). Row sums are A297705, alternating row sums are A131765.
Cf. A103209.

Programs

  • Mathematica
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, -4];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
    T[n_, k_] := Sum[4^(j - k)*(k + 1)*Binomial[n + j - k, 2*j - k]*Binomial[2*j - k, j - k]/(j + 1), {j, k, n}];
    Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Detlef Meya, Jan 15 2024 *)
  • PARI
    T(n,k) = sum(j = k, n, 4^(j - k)*(k + 1)*binomial(n + j - k, 2*j - k)* binomial(2*j - k, j - k)/(j + 1)) \\ Andrew Howroyd, Jan 15 2024

Formula

T(n, k) = Sum_{j = k..n} 4^(j - k)*(k + 1)*binomial(n + j - k, 2*j - k)* binomial(2*j - k, j - k)/(j + 1). - Detlef Meya, Jan 15 2024
Showing 1-2 of 2 results.