cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297844 a(n) = Sum_{d|n} max(d, n/d)^5.

Original entry on oeis.org

1, 64, 486, 2080, 6250, 16038, 33614, 67584, 118341, 206250, 322102, 515264, 742586, 1109262, 1525000, 2163712, 2839714, 3912786, 4952198, 6606250, 8201816, 10629366, 12872686, 16504000, 19534375, 24505338, 28815912, 35529998, 41022298, 50334302
Offset: 1

Views

Author

Seiichi Manyama, Jan 07 2018

Keywords

Comments

If p is a prime, then 2*p^5 belongs to this sequence. Conjecture: The converse is true. - Alexandra Hercilia Pereira Silva, Oct 04 2022

Crossrefs

Sum_{d|n} max(d, n/d)^k: A117003 (k=1), A297841 (k=2), A297842 (k=3), A297843 (k=4), this sequence (k=5).

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (Max[#, n/#]^5 & /@ d)]; Array[f, 32] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    {a(n) = sumdiv(n, d, max(d, n/d)^5)}

Formula

a(n) + A297795(n) = 2*A001160(n).
Sum_{k=1..n} a(k) ~ (zeta(6)/3) * n^6. - Amiram Eldar, Jan 12 2025