A297961 a(1) = number of 1-digit primes (that is, 4: 2,3,5,7); then a(n) = number of distinct n-digit prime numbers obtained by alternately left- and right-concatenating a digit to the a(n-1) primes obtained in the previous iteration.
4, 11, 20, 53, 51, 100, 63, 76, 42, 43, 20, 13, 4, 4, 1
Offset: 1
Examples
1-digit 2-digit 3-digit 4-digit ... 15-digit --------------------------------------------------------------- 2 3 13 131 2131 6131 137 2137 3137 9137 139 4139 23 233 5233 8233 239 2239 9239 43 431 5431 8431 9431 433 1433 3433 7433 9433 439 1439 9439 53 73 733 1733 3733 4733 6733 9733 739 3739 9739 83 839 5839 8839 9839 5 7 17 173 6173 9173 179 2179 5179 8179 37 373 1373 3373 4373 6373 379 6379 47 479 5479 9479 67 673 3673 4673 6673 7673 677 2677 889292677731979 3677 8677 9677 97 971 2971 6971 8971 977 6977 --------------------------------------------------------------- a(1) = 4, a(2) = 11, a(3) = 20, a(4) = 53, ..., a(15)= 1.
Links
- Prime Curios, 889292677731979
Programs
-
Mathematica
Block[{b = 10, t}, t = Select[Range[b], CoprimeQ[#, b] &]; TakeWhile[Length /@ Fold[Function[{a, n}, Append[a, If[EvenQ[n], Join @@ Map[Function[k, Select[Map[Prepend[k, #] &, Range[9]], PrimeQ@ FromDigits[#, b] &]], Last[a]], Join @@ Map[Function[k, Select[Map[Append[k, #] &, t], PrimeQ@ FromDigits[#, b] &]], Last[a]]]]] @@ {#1, #2} &, {IntegerDigits[Prime@ Range@ PrimePi@ b, b]}, Range[2, 16]], # > 0 &]] (* Michael De Vlieger, Jan 20 2018 *)
-
Python
from sympy import isprime def alst(): primes, alst = [2, 3, 5, 7], [] while len(primes) > 0: alst.append(len(primes)) if len(alst)%2 == 1: candidates = set(int(d+str(p)) for p in primes for d in "123456789") else: candidates = set(int(str(p)+d) for p in primes for d in "1379") primes = [c for c in candidates if isprime(c)] return alst print(alst()) # Michael S. Branicky, Apr 11 2021
Comments