cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298048 a(1) = number of 1-digit primes (that is, 4: 2,3,5,7); then a(n) = number of distinct n-digit prime numbers obtained by left- or right-concatenating a digit to the a(n-1) primes obtained in the previous iteration.

Original entry on oeis.org

4, 16, 70, 243, 638, 1450, 2819, 4951, 7629, 10677, 13267, 15182, 15923, 15796, 14369, 12547, 10291, 7939, 5703, 3911, 2559, 1595, 920, 561, 321, 167, 72, 37, 11, 6, 3
Offset: 1

Views

Author

Seiichi Manyama, Jan 11 2018

Keywords

Comments

A137812 lists the primes counted here. - Jon E. Schoenfield, Jan 28 2022

Examples

			2-digit primes:
-------------------
23   2->23 or 3->23
29   2->29
13   3->13
43   3->43
53   3->53 or 5->53
73   3->73 or 7->73
83   3->83
31   3->31
37   3->37 or 7->37
59   5->59
17   7->17
47   7->47
67   7->67
97   7->97
71   7->71
79   7->79
-------------------
a(2) = 16.
===================
3-digit primes:
[223, 233, 523, 823, 239, 229, 293, 829, 929, 113, 131, 313, 613, 137, 139, 311, 331, 431, 631, 317, 433, 443, 643, 743, 439, 353, 653, 853, 953, 173, 373, 733, 673, 773, 739, 337, 937, 379, 283, 383, 683, 883, 983, 839, 359, 593, 659, 859, 599, 617, 179, 271, 571, 971, 719, 347, 547, 647, 947, 479, 167, 367, 467, 677, 967, 197, 397, 797, 977, 997]
In the case of 223, 2->23 (adding the rightmost digit)->223 (adding the leftmost digit) and 2, 23 and 223 are prime.
In the case of 233, 2->23 (adding the rightmost digit)->233 (adding the rightmost digit) and 2, 23 and 233 are prime.
In the case of 523, 2->23 (adding the rightmost digit)->523 (adding the leftmost digit) and 2, 23 and 523 are prime.
a(3) = 70.
		

Crossrefs

Programs

  • Mathematica
    Block[{b = 10, t}, t = Select[Range[b], CoprimeQ[#, b] &]; TakeWhile[Length /@ Fold[Function[{a, n}, Append[a, Union[Join @@ {Join @@ Map[Function[k, Select[Map[Prepend[k, #] &, Range[b - 1]], PrimeQ@ FromDigits[#, b] &]], Last[a]], Join @@ Map[Function[k, Select[Map[Append[k, #] &, t], PrimeQ@ FromDigits[#, b] &]], Last[a]]}] ] ] @@ {#1, #2} &, {IntegerDigits[Prime@ Range@ PrimePi@ b, b]}, Range[2, 40]], # > 0 &]] (* Michael De Vlieger, Jan 21 2018 *)
  • Python
    from sympy import isprime
    def alst():
      primes, alst = [2, 3, 5, 7], []
      while len(primes) > 0:
        alst.append(len(primes))
        candidates = set(int(d+str(p)) for p in primes for d in "123456789")
        candidates |= set(int(str(p)+d) for p in primes for d in "1379")
        primes = [c for c in candidates if isprime(c)]
      return alst
    print(alst()) # Michael S. Branicky, Apr 11 2021
  • Ruby
    require 'prime'
    def A298048(n)
      ary = [2, 3, 5, 7]
      a_ary = [4]
      (n - 1).times{|i|
        ary1 = []
        ary.each{|a|
          (1..9).each{|d|
            j = d * 10 ** (i + 1) + a
            ary1 << j if j.prime?
            j = a * 10 + d
            ary1 << j if j.prime?
          }
        }
        ary = ary1.uniq
        a_ary << ary.size
      }
      a_ary
    end
    p A298048(10)
    

Extensions

a(16)-a(31) from Michael De Vlieger, Jan 21 2018