cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298102 The first of five consecutive integers the sum of which is equal to the sum of five consecutive prime numbers.

Original entry on oeis.org

77, 279, 293, 327, 347, 353, 401, 437, 509, 641, 675, 683, 785, 803, 839, 885, 947, 961, 1169, 1177, 1193, 1239, 1325, 1337, 1395, 1433, 1461, 1501, 1545, 1639, 1683, 1715, 1731, 1777, 1809, 1915, 1955, 1989, 2031, 2059, 2139, 2145, 2345, 2387, 2393, 2431
Offset: 1

Views

Author

Colin Barker, Jan 12 2018

Keywords

Comments

Also: Number m such that 5 * m + 10 is the sum of 5 consecutive primes. - David A. Corneth, Jan 12 2018

Examples

			77 is in the sequence because 77+78+79+80+81 = 395 = 71+73+79+83+89.
		

Crossrefs

Programs

  • Mathematica
    p = {2, 3, 5, 7, 11}; lst = {}; While[p[[1]] < 3001, t = Plus @@ p; If[Mod[t, 10] == 5, AppendTo[lst, (t - 10)/5]]; p = Join[Rest@p, {NextPrime[p[[-1]]]}]]; lst (*  Robert G. Wilson v, Jan 14 2018 *)
    Select[(#-10)/5&/@(Total/@Partition[Prime[Range[400]],5,1]),IntegerQ] (* Harvey P. Dale, Jun 22 2019 *)
  • PARI
    L=List(); forprime(p=2, 2500, q=nextprime(p+1); r=nextprime(q+1); s=nextprime(r+1); t=nextprime(s+1); u=p+q+r+s+t; if((u-10)%5==0, listput(L, (u-10)\5))); Vec(L)
    
  • PARI
    upto(n) = my(res = List(), pr = primes(5), s = vecsum(pr)); while(pr[5] < n, if(s == 5 * pr[3], listput(res, pr[1])); lp = nextprime(pr[5] + 1); s += (lp - pr[1]); for(i = 1, 4, pr[i] = pr[i+1]); pr[5] = lp); res \\ David A. Corneth, Jan 12 2018

Extensions

New name by David A. Corneth, Jan 12 2018