A298202 Number of Eulerian cycles in the n-Sierpinski gasket graph.
1, 16, 102400, 40823664148480000, 4024143600922674552523331296813921054228480000000000
Offset: 1
Keywords
Examples
3 example graphs: o / \ o---o / \ / \ o o---o---o / \ / \ / \ o o---o o---o o---o / \ / \ / \ / \ / \ / \ / \ o---o o---o---o o---o---o---o---o Graph: S_1 S_2 S_3 A triangle has a single Eulerian circuit, so a(1) = 1. The level 2 graph has 16 distinct circuits, 12 that reverse at a middle vertex and 4 that don't, so a(2) = 16.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..7
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Eric Weisstein's World of Mathematics, Eulerian Cycle.
- Eric Weisstein's World of Mathematics, Sierpinski Gasket Graph.
Crossrefs
Cf. A246959.
Programs
-
Mathematica
NestList[Function[{e, f, g}, {16 e^3 + 48 f e^2, 3 e^3 + (32 f + 8 g) e^2 + 56 f^2 e, e^3 + (30 f + 12 g) e^2 + (156 f^2 + 96 g f) e + 112 f^3}] @@ # &, {1, 0, 0}, 5][[All, 1]] (* Eric W. Weisstein, Feb 02 2024 based on code from Andrew Howroyd *)
-
PARI
P(u)={my([e,f,g]=u); [16*e^3 + 48*f*e^2, 3*e^3 + (32*f + 8*g)*e^2 + 56*f^2*e, e^3 + (30*f + 12*g)*e^2 + (156*f^2 + 96*g*f)*e + 112*f^3]} a(n)={my(u=[1,0,0]); for(n=2, n, u=P(u)); u[1]} \\ Andrew Howroyd, Sep 12 2019
Extensions
a(4)-a(5) from Andrew Howroyd, Sep 10 2019
Comments