A298300 Analog of Motzkin numbers for Coxeter type D.
1, 4, 11, 31, 87, 246, 699, 1996, 5723, 16468, 47533, 137567, 399073, 1160082, 3378483, 9855207, 28790403, 84218052, 246651729, 723165765, 2122391109, 6234634266, 18330019029, 53932825926, 158802303429, 467898288676, 1379485436579, 4069450219561
Offset: 2
Keywords
Programs
-
Maple
A298300 := proc(n) hypergeom([(1-n)/2,1-n/2],[1],4)+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4); simplify(%) ; end proc: seq(A298300(n),n=2..40) ; # R. J. Mathar, Jul 27 2022
-
Mathematica
b[n_] := Hypergeometric2F1[(1 - n)/2, 1 - n/2, 1, 4]; c[n_] := (n-2) Hypergeometric2F1[1 - n/2, 3/2 - n/2, 2, 4]; Table[b[n] + c[n], {n, 2, 29}] (* Peter Luschny, Jan 23 2018 *)
-
Sage
def a(n): return (sum(ZZ(n - 2) / i * binomial(2 * i - 2, i - 1) * binomial(n - 2, 2 * i - 2) for i in range(1, floor(n / 2) + 1)) + sum(binomial(n - 1, k) * binomial(n - 1 - k, k) for k in range(floor((n - 1) / 2) + 1)))
Formula
Conjectural algebraic equation: 3*t+2+(3*t^2+5*t-2)*f(t)+(3*t^3-t^2)*f(t)^2 = 0.
From Peter Luschny, Jan 23 2018: (Start)
a(n) = hypergeom([(1-n)/2,1-n/2],[1],4)+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4).
a(n) = G(n-1,1-n,-1/2) + G(n-2,1-n,-1/2)*(n-2)/(n-1) where G(n,a,x) denotes the n-th Gegenbauer polynomial. (End)
D-finite with recurrence +2*n*a(n) +(-7*n+6)*a(n-1) +9*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 27 2022