A298310 Least k > 1 such that all divisors d of (k^(2n+1)+1)/(k+1) satisfy d == 1 (mod 2n+1).
2, 3, 2, 2, 9, 2, 2, 15, 2, 2, 15, 2, 32, 81, 2, 2, 55, 21, 2, 39, 2, 2, 4141, 2, 18, 51, 2, 551, 39, 2, 2, 21267, 21, 2, 1012, 2, 2, 826, 330, 2, 729, 2, 136, 204, 2, 3, 280, 20, 2
Offset: 0
Examples
a(170) = 2 wherein 2*170 + 1 = 341 = 11*31 is the smallest psp(2). From _M. F. Hasler_, Oct 15 2018: (Start) a(0) = 2 is the least integer k > 1 for which (k+1)/(k+1) == 1 (mod 1). (Here we even have equality, but any integer is congruent to any other integer, modulo 1.) a(1) = 3 is the least k > 1 for which (k^3+1)/(k+1) = k^2 - k + 1 = P3(-k) == 1 (mod 3). Indeed, P3(-3) = 7 == 1 (mod 3), while P3(-2) = 3 == 0 (mod 3). (End)
Links
- Kevin P. Thompson, Factorizations to support known terms of a(n) for n = 1..68
Programs
-
Mathematica
Table[SelectFirst[Range[2, 100], AllTrue[Divisors[(#^(2 n + 1) + 1)/(# + 1)], Mod[#, 2 n + 1] == 1 &] &], {n, 21}] (* Michael De Vlieger, Feb 01 2018 *)
-
PARI
isok(k, n) = {fordiv((k^(2*n+1)+1)/(k+1), d, if (Mod(d, (2*n+1)) != 1, return (0));); return(1);} a(n) = {my(k = 2); while (!isok(k, n), k++); k;} \\ Michel Marcus, Jan 19 2018
-
PARI
A298310(n)={n=n*2+1;for(k=2,oo,fordiv(n,m,m>1&&vecmax(factor(polcyclo(m,-k))[,1]%n)!=1&& next(2));return(k))} \\ M. F. Hasler, Oct 14 2018
Formula
a(n) = min{k > 1: for all prime p, if p | (k^(2n+1)+1)/(k+1) then p == 1 (mod 2n+1)}. - Kevin P. Thompson, Mar 18 2022
Extensions
a(22) corrected by Robert Israel, Jan 18 2018
a(1) corrected by Michel Marcus, Jan 19 2018
a(27)-a(30) from Robert Price, Feb 17 2018
a(31)-a(41) from M. F. Hasler, Oct 15 2018
a(42)-a(48) from Kevin P. Thompson, Mar 18 2022
Comments