cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A298422 Number of rooted trees with n nodes in which all positive outdegrees are the same.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums of A298426.

Examples

			The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
		

Crossrefs

Programs

  • Mathematica
    srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[srut[n]//Length,{n,20}]

Formula

a(n) = 2 <=> n in {A008864}. - Alois P. Heinz, Jan 20 2018

Extensions

a(44)-a(52) from Alois P. Heinz, Jan 20 2018

A298426 Regular triangle where T(n,k) is number of k-ary rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 11, 4, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 23, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums are A298422.

Examples

			Triangle begins:
1
0  1
0  1  1
0  1  0  1
0  1  1  0  1
0  1  0  0  0  1
0  1  2  1  0  0  1
0  1  0  0  0  0  0  1
0  1  3  0  1  0  0  0  1
0  1  0  2  0  0  0  0  0  1
0  1  6  0  0  1  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  1
0  1  11 4  2  0  1  0  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  0  0  1
0  1  23 0  0  0  0  1  0  0  0  0  0  0  1
0  1  0  8  0  2  0  0  0  0  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    nn=16;
    arut[n_,k_]:=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[arut[#,k]&/@c]]]/@Select[IntegerPartitions[n-1],Length[#]===k&]]
    Table[arut[n,k]//Length,{n,nn},{k,0,n-1}]

A298423 Number of integer partitions of n such that the predecessor of each part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 4, 6, 2, 11, 2, 7, 8, 10, 2, 15, 2, 16, 11, 9, 2, 28, 7, 10, 14, 22, 2, 37, 2, 25, 18, 12, 17, 55, 2, 13, 23, 52, 2, 55, 2, 40, 51, 15, 2, 95, 13, 44, 34, 53, 2, 79, 37, 85, 41, 18, 2, 185, 2, 19, 80, 91, 54, 112, 2, 87, 56, 122, 2
Offset: 0

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Note that n is automatically divisible by the number of parts.

Examples

			The a(9) = 4 partitions: (9), (441), (711), (111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]]],{n,60}]

Formula

G.f.: Sum_{k>=0} x^k/Product_{i=1..k} (1-x^(k*i)).

A184155 The Matula-Goebel number of rooted trees having all leaves at the same level.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 49, 53, 57, 59, 63, 64, 67, 73, 81, 83, 85, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 159, 171, 189, 227, 241, 243, 256, 269, 277, 289, 307, 311, 331, 335, 343, 361, 365, 367, 371, 391, 393, 399, 419, 425, 431, 439, 441, 477
Offset: 1

Views

Author

Emeric Deutsch, Oct 07 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
The sequence is infinite.

Examples

			7 is in the sequence because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having all leaves at level 2.
2^m is in the sequence for each positive integer m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
From _Gus Wiseman_, Mar 30 2018: (Start)
Sequence of trees begins:
01 o
02 (o)
03 ((o))
04 (oo)
05 (((o)))
07 ((oo))
08 (ooo)
09 ((o)(o))
11 ((((o))))
16 (oooo)
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
31 (((((o)))))
(End)
		

References

  • F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
  • I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
  • I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
  • D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

Crossrefs

Programs

  • Maple
    with(numtheory): P := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: A := {}: for n to 500 do if degree(numer(subs(x = 1/x, P(n)))) = 0 then A := `union`(A, {n}) else  end if end do: A;
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    dep[n_]:=If[n===1,0,1+Max@@dep/@primeMS[n]];
    rnkQ[n_]:=And[SameQ@@dep/@primeMS[n],And@@rnkQ/@primeMS[n]];
    Select[Range[2000],rnkQ] (* Gus Wiseman, Mar 30 2018 *)

Formula

In A184154 one constructs for each n the generating polynomial P(n,x) of the leaves of the rooted tree with Matula-Goebel number n, according to their levels. The Maple program finds those n (between 1 and 500) for which P(n,x) is a monomial.

A303024 Matula-Goebel numbers of anti-binary (no binary branchings) rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 16, 18, 19, 20, 24, 27, 30, 31, 32, 36, 37, 40, 44, 45, 48, 50, 53, 54, 60, 61, 64, 66, 67, 71, 72, 75, 76, 80, 81, 88, 89, 90, 96, 99, 100, 103, 108, 110, 113, 114, 120, 124, 125, 127, 128, 131, 132, 135, 144, 148, 150, 151, 152, 157
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The sequence of anti-binary rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   8: (ooo)
  11: ((((o))))
  12: (oo(o))
  16: (oooo)
  18: (o(o)(o))
  19: ((ooo))
  20: (oo((o)))
  24: (ooo(o))
  27: ((o)(o)(o))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    abQ[n_]:=Or[n==1,And[PrimeOmega[n]!=2,And@@Cases[FactorInteger[n],{p_,_}:>abQ[PrimePi[p]]]]]
    Select[Range[100],abQ]

A303026 Matula-Goebel numbers of series-reduced anti-binary (no unary or binary branchings) rooted trees.

Original entry on oeis.org

1, 8, 16, 32, 64, 76, 128, 152, 212, 256, 304, 424, 512, 524, 608, 722, 848, 1024, 1048, 1216, 1244, 1444, 1532, 1696, 2014, 2048, 2096, 2432, 2488, 2876, 2888, 3064, 3392, 3524, 4028, 4096, 4192, 4864, 4976, 4978, 5204, 5618, 5752, 5776, 6128, 6476, 6784
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The sequence of series-reduced anti-binary rooted trees together with their Matula-Goebel numbers begins:
     1: o
     8: (ooo)
    16: (oooo)
    32: (ooooo)
    64: (oooooo)
    76: (oo(ooo))
   128: (ooooooo)
   152: (ooo(ooo))
   212: (oo(oooo))
   256: (oooooooo)
   304: (oooo(ooo))
   424: (ooo(oooo))
   512: (ooooooooo)
   524: (oo(ooooo))
   608: (ooooo(ooo))
   722: (o(ooo)(ooo))
   848: (oooo(oooo))
  1024: (oooooooooo)
  1048: (ooo(ooooo))
  1216: (oooooo(ooo))
  1244: (oo(oooooo))
  1444: (oo(ooo)(ooo))
  1532: (oo(oo(ooo)))
  1696: (ooooo(oooo))
  2014: (o(ooo)(oooo))
  2048: (ooooooooooo)
		

Crossrefs

Programs

  • Mathematica
    azQ[n_]:=Or[n==1,And[PrimeOmega[n]>2,And@@Cases[FactorInteger[n],{p_,_}:>azQ[PrimePi[p]]]]]
    Select[Range[1000],azQ]

A298479 Matula-Goebel numbers of rooted trees in which all positive outdegrees are different.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 16, 19, 24, 28, 32, 38, 42, 48, 52, 53, 56, 57, 64, 68, 74, 84, 96, 104, 106, 107, 112, 128, 131, 134, 136, 152, 159, 163, 168, 178, 192, 208, 212, 224, 228, 256, 262, 263, 272, 296, 304, 311, 318, 336, 356, 384, 393, 416, 446, 448, 456
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
4  (oo)
6  (o(o))
7  ((oo))
8  (ooo)
12 (oo(o))
16 (oooo)
19 ((ooo))
24 (ooo(o))
28 (oo(oo))
32 (ooooo)
38 (o(ooo))
42 (o(o)(oo))
48 (oooo(o))
52 (oo(o(o)))
53 ((oooo))
56 (ooo(oo))
57 ((o)(ooo))
64 (oooooo)
68 (oo((oo)))
74 (o(oo(o)))
84 (oo(o)(oo))
96 (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    doQ[n_]:=Or[n===1,UnsameQ@@Length/@Cases[MGtree[n],{},{0,Infinity}]];
    Select[Range[1000],doQ]
Showing 1-7 of 7 results.