cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A316413 Heinz numbers of integer partitions whose length divides their sum.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Comments

In other words, partitions whose average is an integer.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of partitions whose length divides their sum begins (1), (2), (11), (3), (4), (111), (22), (31), (5), (6), (1111), (7), (8), (42), (51), (9), (33), (222), (411).
		

Crossrefs

Programs

  • Maple
    isA326413 := proc(n)
        psigsu := A056239(n) ;
        psigle := numtheory[bigomega](n) ;
        if modp(psigsu,psigle) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    n := 1:
    for i from 2 to 3000 do
        if isA326413(i) then
            printf("%d %d\n",n,i);
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 09 2019
    # second Maple program:
    q:= n-> (l-> nops(l)>0 and irem(add(i, i=l), nops(l))=0)(map
            (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    select(q, [$1..110])[];  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    Select[Range[2,100],Divisible[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]],PrimeOmega[#]]&]

A067538 Number of partitions of n in which the number of parts divides n.

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 11, 9, 14, 2, 46, 2, 24, 51, 66, 2, 126, 2, 202, 144, 69, 2, 632, 194, 116, 381, 756, 2, 1707, 2, 1417, 956, 316, 2043, 5295, 2, 511, 2293, 9151, 2, 10278, 2, 8409, 14671, 1280, 2, 36901, 8035, 21524, 11614, 25639, 2, 53138, 39810, 85004
Offset: 1

Views

Author

Naohiro Nomoto, Jan 27 2002

Keywords

Comments

Also sum of p(n,d) over the divisors d of n, where p(n,m) is the count of partitions of n in exactly m parts. - Wouter Meeussen, Jun 07 2009
From Gus Wiseman, Sep 24 2019: (Start)
Also the number of integer partitions of n whose maximum part divides n. The Heinz numbers of these partitions are given by A326836. For example, the a(1) = 1 through a(8) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (11111) (33) (1111111) (44)
(211) (222) (422)
(1111) (321) (431)
(2211) (2222)
(3111) (4211)
(21111) (22211)
(111111) (41111)
(221111)
(2111111)
(11111111)
(End)

Examples

			a(3)=2 because 3 is a prime; a(4)=4 because the five partitions of 4 are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}, and the number of parts in each of them divides 4 except for {2, 1, 1}.
From _Gus Wiseman_, Sep 24 2019: (Start)
The a(1) = 1 through a(8) = 11 partitions whose length divides their sum are the following. The Heinz numbers of these partitions are given by A316413.
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (31)             (42)                 (53)
                    (1111)           (51)                 (62)
                                     (222)                (71)
                                     (321)                (2222)
                                     (411)                (3221)
                                     (111111)             (3311)
                                                          (4211)
                                                          (5111)
                                                          (11111111)
(End)
		

Crossrefs

The strict case is A102627.
Partitions with integer geometric mean are A067539.

Programs

  • Mathematica
    Do[p = IntegerPartitions[n]; l = Length[p]; c = 0; k = 1; While[k < l + 1, If[ IntegerQ[ n/Length[ p[[k]] ]], c++ ]; k++ ]; Print[c], {n, 1, 57}, All]
    p[n_,k_]:=p[n,k]=p[n-1,k-1]+p[n-k,k];p[n_,k_]:=0/;k>n;p[n_,n_]:=1;p[n_,0]:=0
    Table[Plus @@ (p[n,# ]&/ @ Divisors[n]),{n,36}] (* Wouter Meeussen, Jun 07 2009 *)
    Table[Count[IntegerPartitions[n], q_ /; IntegerQ[Mean[q]]], {n, 50}]  (*Clark Kimberling, Apr 23 2019 *)
  • PARI
    a(n) = {my(nb = 0); forpart(p=n, if ((vecsum(Vec(p)) % #p) == 0, nb++);); nb;} \\ Michel Marcus, Jul 03 2018
    
  • Python
    # uses A008284_T
    from sympy import divisors
    def A067538(n): return sum(A008284_T(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Sep 21 2023

Formula

a(p) = 2 for all primes p.

Extensions

Extended by Robert G. Wilson v, Oct 16 2002

A143773 Number of partitions of n such that every part is divisible by number of parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 5, 1, 4, 3, 6, 1, 8, 1, 7, 5, 6, 1, 14, 2, 7, 8, 11, 1, 17, 1, 14, 11, 9, 3, 29, 1, 10, 15, 23, 1, 28, 1, 23, 25, 12, 1, 51, 2, 20, 25, 32, 1, 44, 11, 39, 31, 15, 1, 94, 1, 16, 40, 52, 19, 64, 1, 57, 45, 44, 1, 126, 1, 19, 83, 74, 6, 90, 1, 124, 63, 21, 1, 186
Offset: 1

Views

Author

Vladeta Jovovic, Aug 31 2008

Keywords

Examples

			The a(18) = 8 partitions are (18), (10 8), (12 6), (14 4), (16 2), (6 6 6), (9 6 3), (12 3 3). - _Gus Wiseman_, Jan 26 2018
		

Crossrefs

Programs

  • Mathematica
    m = 100;
    gf = Sum[x^(k^2)/Product[1-x^(k*i), {i, 1, k}], {k, 1, Sqrt[m]//Ceiling}];
    CoefficientList[gf + O[x]^m, x] // Rest (* Jean-François Alcover, May 13 2019 *)
  • PARI
    Vec(sum(k=1,20,x^(k^2)/prod(i=1,k,1-x^(k*i)+O(x^400)))) \\ Max Alekseyev, May 03 2009

Formula

G.f.: Sum(x^(k^2)/Product(1-x^(k*i), i=1..k), k=1..infinity).
For prime p, a(p) = 1 and a(p^2) = 2. For odd prime p, a(2*p) = (p + 1)/2. - Peter Bala, Mar 03 2025

Extensions

More terms from Max Alekseyev, May 03 2009

A298422 Number of rooted trees with n nodes in which all positive outdegrees are the same.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums of A298426.

Examples

			The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
		

Crossrefs

Programs

  • Mathematica
    srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[srut[n]//Length,{n,20}]

Formula

a(n) = 2 <=> n in {A008864}. - Alois P. Heinz, Jan 20 2018

Extensions

a(44)-a(52) from Alois P. Heinz, Jan 20 2018

A349156 Number of integer partitions of n whose mean is not an integer.

Original entry on oeis.org

1, 0, 0, 1, 1, 5, 3, 13, 11, 21, 28, 54, 31, 99, 111, 125, 165, 295, 259, 488, 425, 648, 933, 1253, 943, 1764, 2320, 2629, 2962, 4563, 3897, 6840, 6932, 9187, 11994, 12840, 12682, 21635, 25504, 28892, 28187, 44581, 42896, 63259, 66766, 74463, 104278, 124752
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2021

Keywords

Comments

Equivalently, partitions whose length does not divide their sum.
By conjugation, also the number of integer partitions of n with greatest part not dividing n.

Examples

			The a(3) = 1 through a(8) = 11 partitions:
  (21)  (211)  (32)    (2211)   (43)      (332)
               (41)    (3111)   (52)      (422)
               (221)   (21111)  (61)      (431)
               (311)            (322)     (521)
               (2111)           (331)     (611)
                                (421)     (22211)
                                (511)     (32111)
                                (2221)    (41111)
                                (3211)    (221111)
                                (4111)    (311111)
                                (22111)   (2111111)
                                (31111)
                                (211111)
		

Crossrefs

Below, "!" means either enumerative or set theoretical complement.
The version for nonempty subsets is !A051293.
The complement is counted by A067538, ranked by A316413.
The geometric version is !A067539, strict !A326625, ranked by !A326623.
The strict case is !A102627.
The version for prime factors is A175352, complement A078175.
The version for distinct prime factors is A176587, complement A078174.
The ordered version (compositions) is !A271654, ranked by !A096199.
The multiplicative version (factorizations) is !A326622, geometric !A326028.
The conjugate is ranked by !A326836.
The conjugate strict version is !A326850.
These partitions are ranked by A348551.
A000041 counts integer partitions.
A326567/A326568 give the mean of prime indices, conjugate A326839/A326840.
A236634 counts unbalanced partitions, complement of A047993.
A327472 counts partitions not containing their mean, complement of A237984.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}]

Formula

a(n > 0) = A000041(n) - A067538(n).

A316428 Heinz numbers of integer partitions such that every part is divisible by the number of parts.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 125, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 169, 173, 179, 181, 183, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			93499 is the Heinz number of (12,8,8,4) and belongs to the sequence because each part is divisible by 4.
Sequence of partitions such that every part is divisible by the number of parts begins (1), (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>Divisible[PrimePi[p],PrimeOmega[#]]]&]

A298426 Regular triangle where T(n,k) is number of k-ary rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 11, 4, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 23, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums are A298422.

Examples

			Triangle begins:
1
0  1
0  1  1
0  1  0  1
0  1  1  0  1
0  1  0  0  0  1
0  1  2  1  0  0  1
0  1  0  0  0  0  0  1
0  1  3  0  1  0  0  0  1
0  1  0  2  0  0  0  0  0  1
0  1  6  0  0  1  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  1
0  1  11 4  2  0  1  0  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  0  0  1
0  1  23 0  0  0  0  1  0  0  0  0  0  0  1
0  1  0  8  0  2  0  0  0  0  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    nn=16;
    arut[n_,k_]:=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[arut[#,k]&/@c]]]/@Select[IntegerPartitions[n-1],Length[#]===k&]]
    Table[arut[n,k]//Length,{n,nn},{k,0,n-1}]

A340606 Numbers whose prime indices (A112798) are all divisors of the number of prime factors (A001222).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 16, 20, 24, 32, 36, 50, 54, 56, 64, 81, 84, 96, 125, 126, 128, 144, 160, 176, 189, 196, 216, 240, 256, 294, 324, 360, 384, 400, 416, 441, 486, 512, 540, 576, 600, 624, 686, 729, 810, 864, 896, 900, 936, 968, 1000, 1024, 1029, 1040, 1088, 1215
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  20: {1,1,3}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  50: {1,3,3}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  81: {2,2,2,2}
  84: {1,1,2,4}
  96: {1,1,1,1,1,2}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428).
These partitions are counted by A340693.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A003963 multiplies together the prime indices of n.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length divides n (A316413).
A056239 adds up the prime indices of n.
A061395 selects the maximum prime index.
A067538 counts partitions of n whose maximum divides n (A326836).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 = partitions whose length is divisible by their maximum (A340609).
A168659 = partitions whose maximum is divisible by their length (A340610).
A289509 lists numbers with relatively prime prime indices.
A326842 = partitions of n whose length and parts all divide n (A326847).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340852 have a factorization with factors dividing length.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@IntegerQ/@(PrimeOmega[#]/primeMS[#])&]

A298424 Matula-Goebel numbers of rooted trees in which all positive outdegrees are the same.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 16, 31, 32, 49, 64, 76, 86, 127, 128, 256, 301, 424, 454, 512, 709, 722, 886, 1024, 1532, 1589, 1849, 2048, 2096, 3101, 3986, 4096, 5381, 6418, 6859, 8192, 9761, 9952, 11236, 13766, 13951, 14554, 16384, 19049, 21884, 22463, 23512
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Examples

			Sequence of trees begins:
1   o
2   (o)
3   ((o))
4   (oo)
5   (((o)))
8   (ooo)
11  ((((o))))
14  (o(oo))
16  (oooo)
31  (((((o)))))
32  (ooooo)
49  ((oo)(oo))
64  (oooooo)
76  (oo(ooo))
86  (o(o(oo)))
127 ((((((o))))))
128 (ooooooo)
256 (oooooooo)
301 ((oo)(o(oo)))
424 (ooo(oooo))
454 (o((oo)(oo)))
512 (ooooooooo)
709 (((((((o)))))))
722 (o(ooo)(ooo))
886 (o(o(o(oo))))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    soQ[n_]:=Or[n===1,SameQ@@Length/@Cases[MGtree[n],{},{0,Infinity}]];
    Select[Range[1000],soQ]

A340693 Number of integer partitions of n where each part is a divisor of the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 7, 7, 10, 10, 14, 14, 17, 19, 24, 24, 32, 33, 42, 43, 58, 59, 75, 79, 98, 104, 124, 128, 156, 166, 196, 204, 239, 251, 292, 306, 352, 372, 426, 445, 514, 543, 616, 652, 745, 790, 896, 960, 1080, 1162, 1311, 1400, 1574, 1692, 1892
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2021

Keywords

Comments

The only strict partitions counted are (), (1), and (2,1).
Is there a simple generating function?

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  11  21   22    311    2211    331      2222      333
         111  1111  2111   111111  2221     4211      4221
                    11111          4111     221111    51111
                                   211111   311111    222111
                                   1111111  11111111  321111
                                                      21111111
                                                      111111111
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428), with strict case A340830.
The case where length also divides n is A326842 (A326847).
The Heinz numbers of these partitions are A340606.
The version for factorizations is A340851, with reciprocal version A340853.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A067539 counts partitions with integer geometric mean (A326623).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A330950 = partitions of n whose Heinz number is divisible by n (A324851).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(Length[#]/#)&]],{n,0,30}]
Showing 1-10 of 11 results. Next