cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298648 Number of smallest coverings of the n-dipyramidal graph by maximal cliques.

Original entry on oeis.org

1, 4, 30, 12, 98, 28, 270, 60, 682, 124, 1638, 252, 3810, 508, 8670, 1020, 19418, 2044, 42966, 4092, 94162, 8188, 204750, 16380, 442314, 32764, 950214, 65532, 2031554, 131068, 4325310, 262140, 9174970, 524284, 19398582, 1048572, 40894386, 2097148, 85983150
Offset: 3

Views

Author

Eric W. Weisstein, Jun 18 2018

Keywords

Crossrefs

Cf. A110654 (clique covering number of the n-dipyramidal graph).

Programs

  • Maple
    seq(coeff(series((1+4*x+24*x^2-12*x^3-69*x^4+8*x^5+60*x^6-20*x^8)/(1-3*x^2+2*x^4)^2, x,n+1),x,n),n=0..38); # Muniru A Asiru, Jul 02 2018
  • Mathematica
    Join[{1}, Table[If[Mod[n, 2] == 0, 2, n] (2^Ceiling[n/2] - 2), {n, 4, 20}]]
    Join[{1}, Table[2 (1 + (-1)^n) (2^(n/2 - 1) - 1) + (1 - (-1)^n) (2^((n - 1)/2) - 1) n, {n, 4, 20}]]
    Join[{1}, LinearRecurrence[{0, 6, 0, -13, 0, 12, 0, -4}, {4, 30, 12, 98, 28, 270, 60, 682}, 20]]
    CoefficientList[Series[(1 + 4 x + 24 x^2 - 12 x^3 - 69 x^4 + 8 x^5 + 60 x^6 - 20 x^8)/(1 - 3 x^2 + 2 x^4)^2, {x, 0, 20}], x]
  • PARI
    a(n)={if(n==3, 1, if(n%2, n, 2)*(2^ceil(n/2)-2))} \\ Andrew Howroyd, Jun 27 2018
    
  • PARI
    Vec(x^3*(1 + 4*x + 24*x^2 - 12*x^3 - 69*x^4 + 8*x^5 + 60*x^6 - 20*x^8) / ((1 - x)^2*(1 + x)^2*(1 - 2*x^2)^2) + O(x^45)) \\ Colin Barker, Jul 20 2019

Formula

a(2*k) = 2^(k+1) - 4, a(2*k-1) = (2*k-1)*(2^k - 2) for k > 2. - Andrew Howroyd, Jun 27 2018
From Colin Barker, Jul 20 2019: (Start)
G.f.: x^3*(1 + 4*x + 24*x^2 - 12*x^3 - 69*x^4 + 8*x^5 + 60*x^6 - 20*x^8) / ((1 - x)^2*(1 + x)^2*(1 - 2*x^2)^2).
a(n) = (1 + (-1)^n)*(-2+2^(n/2)) + ((-1+(-1)^n)*(sqrt(2) - 2^(n/2))*n)/sqrt(2) for n>3.
a(n) = 6*a(n-2) - 13*a(n-4) + 12*a(n-6) - 4*a(n-8) for n>8.
(End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jun 27 2018