A298648 Number of smallest coverings of the n-dipyramidal graph by maximal cliques.
1, 4, 30, 12, 98, 28, 270, 60, 682, 124, 1638, 252, 3810, 508, 8670, 1020, 19418, 2044, 42966, 4092, 94162, 8188, 204750, 16380, 442314, 32764, 950214, 65532, 2031554, 131068, 4325310, 262140, 9174970, 524284, 19398582, 1048572, 40894386, 2097148, 85983150
Offset: 3
Links
- Muniru A Asiru, Table of n, a(n) for n = 3..700
- Eric Weisstein's World of Mathematics, Dipyramidal Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Minimum Clique Covering
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-13,0,12,0,-4)
Crossrefs
Cf. A110654 (clique covering number of the n-dipyramidal graph).
Programs
-
Maple
seq(coeff(series((1+4*x+24*x^2-12*x^3-69*x^4+8*x^5+60*x^6-20*x^8)/(1-3*x^2+2*x^4)^2, x,n+1),x,n),n=0..38); # Muniru A Asiru, Jul 02 2018
-
Mathematica
Join[{1}, Table[If[Mod[n, 2] == 0, 2, n] (2^Ceiling[n/2] - 2), {n, 4, 20}]] Join[{1}, Table[2 (1 + (-1)^n) (2^(n/2 - 1) - 1) + (1 - (-1)^n) (2^((n - 1)/2) - 1) n, {n, 4, 20}]] Join[{1}, LinearRecurrence[{0, 6, 0, -13, 0, 12, 0, -4}, {4, 30, 12, 98, 28, 270, 60, 682}, 20]] CoefficientList[Series[(1 + 4 x + 24 x^2 - 12 x^3 - 69 x^4 + 8 x^5 + 60 x^6 - 20 x^8)/(1 - 3 x^2 + 2 x^4)^2, {x, 0, 20}], x]
-
PARI
a(n)={if(n==3, 1, if(n%2, n, 2)*(2^ceil(n/2)-2))} \\ Andrew Howroyd, Jun 27 2018
-
PARI
Vec(x^3*(1 + 4*x + 24*x^2 - 12*x^3 - 69*x^4 + 8*x^5 + 60*x^6 - 20*x^8) / ((1 - x)^2*(1 + x)^2*(1 - 2*x^2)^2) + O(x^45)) \\ Colin Barker, Jul 20 2019
Formula
a(2*k) = 2^(k+1) - 4, a(2*k-1) = (2*k-1)*(2^k - 2) for k > 2. - Andrew Howroyd, Jun 27 2018
From Colin Barker, Jul 20 2019: (Start)
G.f.: x^3*(1 + 4*x + 24*x^2 - 12*x^3 - 69*x^4 + 8*x^5 + 60*x^6 - 20*x^8) / ((1 - x)^2*(1 + x)^2*(1 - 2*x^2)^2).
a(n) = (1 + (-1)^n)*(-2+2^(n/2)) + ((-1+(-1)^n)*(sqrt(2) - 2^(n/2))*n)/sqrt(2) for n>3.
a(n) = 6*a(n-2) - 13*a(n-4) + 12*a(n-6) - 4*a(n-8) for n>8.
(End)
Extensions
Terms a(19) and beyond from Andrew Howroyd, Jun 27 2018