A298679 Start with the hexagonal tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of square tiles after n iterations.
0, 3, 6, 33, 102, 423, 1494, 5745, 21102, 79431, 295086, 1103985, 4114710, 15367143, 57329286, 213999153, 798569022, 2980473543, 11122931934, 41512040625, 154923657702, 578185735911, 2157812994486, 8053078824945, 30054477139470, 112164880064583
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- F. Gähler, Matching rules for quasicrystals: the composition-decomposition method, Journal of Non-Crystalline Solids, 153-154 (1993), 160-164.
- Tilings Encyclopedia, Shield
- Index entries for linear recurrences with constant coefficients, signature (2,7,-2).
Programs
-
Mathematica
CoefficientList[Series[ 3x/((1+2x)(1-4x+x^2)) ,{x,0,40}],x] (* or *) LinearRecurrence[{2,7,-2},{0,3,6},40] (* Harvey P. Dale, Mar 02 2022 *)
-
PARI
/* The function substitute() takes as argument a 4-element vector, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons that are to be substituted. The function returns a vector w, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons resulting from the substitution. */ substitute(v) = my(w=vector(4)); for(k=1, #v, while(v[1] > 0, w[4]++; v[1]--); while(v[2] > 0, w[3]++; w[2]=w[2]+2; v[2]--); while(v[3] > 0, w[3]++; w[1]=w[1]+4; v[3]--); while(v[4] > 0, w[1]=w[1]+7; w[2]=w[2]+3; w[3]=w[3]+3; v[4]--)); w terms(n) = my(v=[0, 0, 0, 1], i=0); while(1, print1(v[3], ", "); i++; if(i==n, break, v=substitute(v)))
-
PARI
concat(0, Vec(3*x / ((1 + 2*x)*(1 - 4*x + x^2)) + O(x^40))) \\ Colin Barker, Jan 25 2018
Formula
From Colin Barker, Jan 25 2018: (Start)
G.f.: 3*x / ((1 + 2*x)*(1 - 4*x + x^2)).
a(n) = (1/26)*(-3*(-1)^n*2^(2+n) + (6-5*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(6+5*sqrt(3))).
a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) for n>2.
(End)
Extensions
More terms from Colin Barker, Jan 25 2018
Comments